Dudley Knox Library

411 Dyer Road — Monterey, CA 93943-5101

Phone (831) 656-7735; Fax (831) 656-2842;
OCLC Symbol: AD#; Ariel 131.120.51.241; ill@nps.edu

Borrower: IAT Call #: Electronic
Lending String: ANL,*AD#WYU,CGU,INU Location:
Patron: DEPT; STATUS; Chabala, Gre
g ARIEL
Journal Title: The Third Conference on Charge
Hypercube Concurrent Computers and Maxcost: $15IFM

Applications /
Shipping Address:

Volume: 1 Issue: ILL, Lovejoy Library
Month/Year: 1988Pages: 38 - 60, 384 - 390, Southern lllinois University Edwardsville
843 - 846 ' 30 Hairpin Drive
Edwardsville, IL 62026-1063
Article Author: Conference on Hypercube Fax: 618-650-2381
Multiprocessors (3rd ; 1988 ; Pasadena, Calif.) é«rie'_!l 146.163.157.74
mail:

Article Title: R. Arlauskas, P. Close, S. F.
Nugent, P. Pierce, CORPORATE Intel; iPSC/2
system; a second generation hypercube, The
iPSC/2 node architecture, The iPS

Naval Postgraduate School ILL

wiiad Tn: 2062 (INTHINNEANANAN

Imprint: New York, N.Y. ; Association for Computi

ILL Number: 14155334

T

ARIEL Document Problem Notification

If there is a problem with this ARIEL document, please notify us within 72 hours of receipt. Simply complete this form
and return to us via ARIEL or FAX.

Date: Your OCLC Symbol: ILL/Transaction Number:

Please check M and complete all that apply:

D Missing Page Number(s):

D Edges Cut Off Page Number(s):

D Difficult/Unable to Read Page Number(s):

D Other:

Thank you!

WARNING CONCERNING COPYRIGHT RESTRICTIONS

THIS MATERIAL MAY BE PROTECTED BY
COPYRIGHT LAW (TITLE 17, UNITED STATES CODE).

iPSC®/2 System: A Second Generation Hypercube

Ramune Arlauskas

Intel Scientific Computers

Introduction

This paper examines Intel's second
generation hypercube, the iPSC®/2
system. It is characterized by major
advancements in performance, system
configuration flexibility and
useability, The 1iPSC/2 development
is the result of close work wWith the
iPSC User base -and the broader
concurrent research community.

Based on experience with the first
generation iPSC system, a key design
criteria for the second generation
machine was to provide a better
balance of communications performance
with the processing power.

The second design criteria was to
permit the system to rapidly change
with the evolution of technology.
Through system configuaration
flexibility, the user can grow and
change his system as technology
advances and as his specific
application needs change.

Improved productivity was the third
design criteria. Parallel
programming tools for the iPSC/2

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© ACM 1988 0-89791-278-0/88/0007/0038 $1.50

system needed to substantially
improve program development
productivity. The tools need to be
an extension of the programmer's
familiar workstation environment.

iPSC/2 System

The typical iPSC/2 system consists of
three basic components.

=0
Sl S

iPSC«/2 Concurrent Supercomputer

The cube itself which houses the
nodes connected in a hypercube
topology. The System Resource
Manager which serves as the
administrator console, hosts the
software development tools Kknown as
the Concurrent Workbench™ and serves
as the gateway to other computer
resources and workstations. Finally,
the network of wuser workstations
enables the user to develop

~applications from his familiar

38

environment.

Performance

The 1iPSC/2 system
significant performance
Figure 1 compares two dimensional
Fast Fourier transform (FFT) times
for the iPSC-VX and iPSC/2-VX system,
and Cray X-MP/12.

delivers
improvement.

The 2D FFT
worst case
hypercubes.

is an excellent example of
communications traffic in

A matrix is mapped onto
the nodes in a row orientation,
After each node transforms the data
in the first dimension, it must
exchange different data with every
octher node. This floods the
communication network with messages.
In the first generation machine, it
takes several seconds to complete the

transpose. No floating point
computation occurs during this
period.

Time (sec) 17 MFLOPs (8.2 secs)

204

184 100 MFLOPs

164
14
124
1.0+
08+
0.6+
04+
021

IPSCI1-VX D4
Cray X-MP/12

IPSCI2-vX D4

512
Transform Size (n x n)

128 256

Figure 1: 2D FFT Performance

For a matrix of order 1024, the
iPSC/2-VX system realizes a 6x
improvement both in FFT solve time

and MFLOPs over the first generation
machine, Comparing the results
against a Cray X-MP/12, the solve
time is 50% faster on the iPSC/2
system with comparable MFLOP
performance.

Looking at a complete application,

NEKTON* is a commercially available
fluid dynamics and heat transfer
modeling code. Using spectral

39

element techniques, it also requires
significant computation and
communications power, In figure 2,
we see that the iPSC/2-VX realizes a
65% gain over the first generation

system and a 30% gain over a
Cray X-MP/14, Clearly, the 1iPSC/2
system delivers supercomputer
performance.

MFLOPs 100
100 —

75 -

50 —

25 —

4
0 Ly, , n .
VAX 8700 Convex Ct iPSC-vX Cray X-MP wscﬁz-vx

Figure 2: NEKTON Performance

New Communication Network
The outstanding performance results
in both examples are due to
advancements of the iPSC/2
computation and communication
tehcnologies.

Each iPSC/2 node uses the Intel 80386
32 bit microprocessor which delivers
4 MIPs performance. Each node is
equipped with the Direct Connect
Module™, DCM, for high speed routing
of messages between nodes. The
collection of DCMs produce the high
speed communications network of the
ipPsSC/2.

In the first generation iPSC system,
the store and forward technique was
used for message passing. Each node
in the communications path stored the
message in its memory. The processor
on each node in that path was also
involved in the communications
handling and during those periods was
not available to do other processing.

The Direct Connnect Network can be
thought of as a switching network.
When one node wants to communicate to

another, a series of switches are
closed and the communications path
established. Once the path is built,

messages proceed at the full hardware
speed of 2.8 Mbytes/second. Only the
sending and - destination processors
are 1involved in the communication.
The other processors in the path
continue with their normal
activities. Since it takes only a
few microseconds per node to build
the path, the additional overhead for

multi-hop communications is
insignificant. Single-hop and multi-
hop message transmittal is almost

uniformly fast.

Complimenting the hardware
performance advancements, the node
operating system, NX/2, has been
rewritten to take complete advantage
of the new hardware. It has been
designed to support fast, reliable
message passing. Unlike the first
generation operating system, messages

are not packetized. Rather, NX/2
manages message flow control and
minimizes deadlock through new
message passing protocols and
controlled buffering. Messages are
transmitted in their entirety after

sufficient buffer space is available
on the receiving node,. For O byte
messages latency is about 350us. For
long messages full hardware speed can
be realized since the entire message
is sent at once.

These advancements in the
communications technology supported
by a streamlined operating system
provide a better balance with the
computational capabilities of the
system, Both the 2D FFT and NEKTON
code performance increases are the
result of the improved balance.

System Configuration

Know that its constituent
technologies undergo constant
advancement, the iPSC/2 system has

40

been designed to
improvements over
extensive redesign.

incorporate
time without

While the node board forms the basis
for this flexibility, every component
of the 1iPSC/2 system has been
designed with flexibility as a key
design criteria. Figure 3 illustrates

the modularity of the iPSC/2 node
board.
J"] Standard Bus Expans'von Boa-rd l

Bus
Interlace|

Memory
Module

T

Numeric
Coprocessor
Module

Direct-Connect™
Routing Module

Figure 3: iPSC/2 Node Board

The base platform consists of the
processing element, the 80386, and
several modules connected by a local
bus. The modules include: Memory
Module, Communications Module (DCM),
and the Numeric Coprocessor Module.
Thus as communications, memory and
numeric technology evolve, the system
is positioned to smoothly incorporate
the evolutionary improvements.

The DCM is implemented with CMOS
programmable gate array logic. The
chips are programmed at system boot
time. While the pin-out is etched in
the board, the details of the router
design can be easily altered.

The Memory module supports 1 to 16
Mbytes of memory per node. The
modules are implemented in 1, 4, and
8 Mbyte platforms using standard
commercial components and surface
mount manufacturing teechnology. 16
Mbytes require stacking two 8 Mbyte
boards. These modules were developed
for use with other 1Intel products.

By leveraging from other commercial
developments, the 1iPSC/2 can enjoy
not only volume cost reductions, but
also quicker time to market.

The Numeric module offers the 80387

Arithmetic Coprocessor standard in
the product. 32 bit precision
arithmetic executes at 250 KFLOPs

with 64 bit precision arithmetic at
over 210 KFLOPs. For greater scalar
performance, the SX option delivers
over a MFLOP peak performance per
node and about 650 KFLOPs for 64 bit
arithmetic. The SX option uses
Weitek 1167 chips and plugs into the
80387 socket. Both SX and the 80387
can co-exist.

To futher extend the modularity, the
node has a standard bus interface
which allows each node to be coupled
with a peripheral standard bus board.
Currently the iPSC/2 system supports
the iLBX II interface with a Vector
Extension board, VX. This board
features pipelined vector
capabilities with peak performance
per node in excess of 6 MFLOPs for
double precision arithmetic and 20
MFLOPs for single precision
arithmetic.

The NX/2 operating system has been
designed in 'a modular way and
implemented in C. As the hardware
evolves, the operating system will
evolve with it. Also as new software
capabilities such as 1/0, are added,
they can be easily incorporated in
the base system.

The most important aspect of the
flexibility 1is that the various
capabilities can be mixed to form
hybrid systems. For example, within
a single cube, one can have nodes
with various memory sizes, a mix of
scalar and vector exelerator, a mix
of standard bus boards, and programs
implemented in various languages,
complete configuration flexibility
for the user's needs.

41

Software Development Environment

To 1increase productivity 1in the
development and debugging of
concurrent applications, the 1iPSC/2

system provides a tool set know as

the Concurrent Workbench. This tool
set offers popular languages
including C, Fortran, and Concurrent

Common Lisp™ whose compilers generate
full 32 bit code. A vectorizing
Fortran precompiler, VAST-2, helps
the user optimize his application for
execution on the 1iPSC/2-VX system.
To compliment VAST¥-2, there is an
extensive 1library of vector
arithmetiec functions. iPSC/2
simulators are available for
developing and executing programs on

other UNIX¥-based machines. A source
level debugger, DECON, provides
traditional symbolie debugger

features and special capabilities for
observing, controlling and altering
message-passing in programs. With
the Concurrent Workbench, concurrent
programming is noWw as sophisticated
as sequential programming.

The Unix-based software development
environment supports multi-users who
can access the Concurrent Workbench
from their workstations. For example
the iPSC/2 programmer can develop his
application on a SUN¥-3 workstation.
The user has workstation access to
the Concurrent Workbench as well as
to his workstation specific tools.

The applications interface NX/2 has
been simplified through the use of
several different levels of message
passing protocols. As in the iPSC
system, both syncronous and
asyncronous calls are supported,
however, the type and number of
parameters have been simplified.
Interrupt driven message passing is
also available for greater program
sophistication.

Conclusion

The major advancements of the 1iPSC/2
system have been reviewed,
Additional details are available
within these proceedings (1,...,7].

New processor, communications and
operating system technologies provide
a balanced system that delivers
supercomputer performance.

Significant advancements in iPSC/2
software development tools increase
productivity during program
development.

References:

[1] William L. Bain and Shala Arshi,
Hypersim: Hypercube Simulator for Parallel
System Performance Modeling, Proceedings,
3rd Conference on Hypercube
Concurrent Computers and
Applications, 1988.

[2] Paul Close, The iP5C/2 Node
Archetecture, Proceedings, 3rd
Conference on Hypercube Concurrent
Computers and Applications, 1988.

(3] Dave Ertel, Environment for
Enhancing iPSC/2 Programmer Productivity,
Proceedings, 3rd Conference on
Hypercube Concurrent Computers and
Applications, 1988.

(4] Steve Nugent, The iPSC/2 Direct
Connect™ Communications Technology,
Proceedings, 3rd Conference on
Hypercube Concurrent Computers and
Applications, 1988.

Modularity in the base design of the
iPSC/2 system provides the platform
for easily incorporating
technological advancements in
processing, communications, numerics,
memory, operating system and program
development environments.

In summary, all of these advancements
have preserved the users' investments
in first generation parallel
programming and prepared the iPSC/2
system for commercial application
developments,

[5] Wei-min Pan and Victor Jackson,
A Concurrent Debugger of iPSC/2 Programmers,
Proceedings, 3rd Conference on
Hypercube Concurrent Computers and
Applications, 1988,

6] Paul Pierce, The NX/2 Operating
System, Proceedings, 3rd Conference on
Hypercube Concurrent Computers and
Applications, 1988,

(7] Dave Scott, Application Performance
on the iPSC/2 , Proceedings, 3rd
Conference on Hypercube Concurrent
Computers and Applications, 1988.

*¥*NEKTON is a trademeark of Nektoniecs,
Inec.

¥YAST is a trademark
Sierra Research.

of Pacific

¥Sun is a trademark of Susn

Microsystems

*UNIX is a trademark of the Board of
regents of the University of
California.

42

The iPSC®/2 Node Architecture

Paul Close

Intel Scientific Computers

ABSTRACT

Feedback from users of the first generation iPSC® system plus the development
and availablility of new VLSI based technologies drove the design of the iPSC/2

node,

The new node design was broadly governed by the following goals:
Provide true 32-bit node architecture and performance.
Match the communication performance to the computational performance.
Increase on board memory capacity by using new RAM technology.

Employ a modular functional elements to easily incorporate future
technology.

Allow plug compatibility with existing iPSC systems, including interface
to co-processors.

Ensure software compatibility for existing iPSC applications.

This paper describes how the iPSC/2 node achieved these goals by leveraging
Intel's VLSI expertise and products, surface mount, CMOS and gate array
technologies, and small daughter boards to implement modular subsystems.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title.of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. T.o
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© ACM 1988 0-89791-278-0/88/0007/0043 $1.50

43

1. Features of the iPSC®/2 Node

Increased performance,
greater configurablity,
compatibility were the
goals of the iPSC/2 node.

more memory,
and backward
key design

Major features of the 1iPSC/2 node

are;

--A high performance 32-bit,
'off the shelf' commercial
microprocessor as the core CPU
(Intel 80386), paired with
6UKbytes of high speed
instruction and data cache for
O-wait state operation,
resulting in a single node with
the performance of most
supermini-computers (see Section
5 for measured performance
data).

--Improved communication to
computational performance ratio

by 1increasing communication
bandwidth, and eliminating the
store and forward technique of
the original iPSC system.

--Up to 16 Mbytes of dynamic RAM
can be local to each node.

--Modular design: Numeric co-
processors, memory, and the
routing logiec are all added to
the node base assembly via
modules, allowing wusers ¢to
choose configurations to fit
their necds.

--Form factor compatible the
original iPSC node, including
the interface to the iPSC/VX

vector co-processor.

--Software compatible with most
application code written for the
original iPSC machine, which was
based on the Intel 80286,

iPSC%VP Vector Accelerator Board

Sub-System CPU

Hypercube
Interconnect
o 4
1
2 n ic: .
3 Routing Logic Numeric
4 Direct-Connect™ Coprocessor
Routing Module
External VO

Figure 1. iPSC”/2 Node Block Diagram

44

2. 1iPSC/2 Node Description

Refer to Figure 1 for a diagram of
the main functional blocks of the
iPSC/2 node. Each of the blocks is
described in detail in the following
sections.

2.1. CPU

The main processor of the iPSC/2 node
is the Intel 80386 microcomputer.
The 16MHz version used in the node
has a rating of 4 MIPS. The 80386
was selected not only for it's
performance, but also because it is
completely software compatible with
the 80286 processor used in the
original iPSC machine.

The 80386 has separate 32-bit data
and address paths. A 32-bit memory
access can be completed in only two

clock cycles, enabling the bus to
sustain a throughput of 32
megabytes/sec.

Pipelined architecture enables the
80386 to perform instruction
fetching, decoding, execution, and
memory management functions in
parallel. Because the 80386 pre-
fetches instructions and queues them
internally, instruction fetch and
decode times are absorbed in the

pipeline; the processor rarely has to
wait for an instruction feteh.

Pipelining is not unusual in modern
microprocessor architecture; however,
including the memory management unit
(MMU) in the on-chip pipeline is
somewhat unique to the 80386. The
integrated memory management and
protection mechanism translates
logical addresses to physical
addresses and enforces the rules
necessary for maintaining task
integrity in a multi-tasking
environment. By performing the
memory management on chip, the 80386
eliminates the serious access delays

45

typical of implimentations that use
off-chip methods.

The 80386 can respond to an interrupt
in as little as 3.5uS. The overhead

for task switching is not much
longer. In this case the 80386 can
save the state of one task (all

registers), load the state of another
task (all registers, even segment and
paging registers), and resume
execution.

The iPSC/2 80386 is complimented and
tightly coupled with several support
components:

--82510 USART

--8259 interrupt controllers

--8254 timer

--82258 Advanced DMA controller

The 82510 USART interfaces the node
to the diagnostic link. this link is
RS-422 based, and provides the node

with a low speed, high reliability
'back end' communication path for
initialization, It operates

independently from the routing logiec.
The 82258 interfaces the node memory
system to the routing logic, and is
explained in Section 2.4,

2.2 On Board Numeric Co-processor

The iPSC/2 node currently supports
three numeric options. Two of those

are intended for scalar operations,
and reside on the node. The third is
the VP co-processor board, which

attaches to the node via the Standard
Bus Interface. The VP board is
intended for vector operations.

The on-board numeric operations both

attach via the same 121 pin socket.
They are:
--An Intel 80387 Numeric Co-
processor

--An Intel SX Scalar Extension
Module

The 80837 is a companion processor of
the 80386, and extends the 80386
architecture with floating point,
extended integer, and BCD data types.
It uses an 80-bit internal
architecture, and fully conforms to
the ANSI/IEEE floating point
standard. It is 1logically mapped
into the I/0 address space of the
80386.

The SX module is based on the
Weitek 1167 numeric chip set. It is
designed to be a higher performance
clone of the 80387, giving roughly 2-
3 times the performance. The SX
module 1is memory mapped, occupying
address range CO00Q0000-C1FFFFFFH.

The SX module has a socket for the
80387, and since the two options do
not electrically or mechanically
conflict, it is possible for both to
be used simultaneously.

2.3 Memory Subsystem

The memory subsystem consists of
three components:

1. Up ¢to
Memory.

16-Mbytes of Main

2. ©64-Kbytes of Cache RAM.
3. Non-veolatile EPROM
2.3.1 Main Memory

Main Memory 1is attached via Intel's
standard MMOX surface mount dynamic
RAM, (DRAM) memory module.

Memory modules exist in
configurations of 1, 4, and 8-Mbytes.
At least one memory module but at
most two memory modules may be
installed on a node. Two 8 Mbyte
modules must be stacked for a 16 M
byte configuration. With this

configuration the adjacent slot in
the cube unit is displaced, halving
the number of nodes possible in an
enclosure.

Eight bits on the memory module,
called MSIZEQO through MSIZE7, provide
the node with the necessary
information to determine the amount
of memory installed.

2.3.2 Cache Memory

blU-Kbyted of fast static RAM are used
as a data and code cache. Up to 16
Mbyte of DRAM can be present, and so
only select DRAM 1locations are
shadowed by the cache, based upon
most recent access.

When a DRAM location is read that has
been cached (i.e. it has a shadow
entry in the cache RAM), the data is
returned from the cache, resulting in
0 wait state 80386 reads rather than
the 2 wait state DRAM read. In such
a case, DRAM is not accessed. On
writes to DRAM, the cache entry is
updated if the DRAM location being
written 1is cached (hence the term
'write-trough'). In this case the
cycle is extended and runs with 2
wait states. If a location that is
not cached is read from DRAM, it will
simultaneously become cached,
possibly replacing another location
cache entry. A write to a non-cached
location 1leaves the cache contents
unaffected.

The cache memory and the DRAM share
the same lower sixteen address lines,
so the b6U-Kbyte of cache can wrap
around 256 times within the 16-Mbytes
of DRAM. This is avoided by the tag
RAMs, which are also addressed by the
same lower 16 address lines. The tag
RAMs store the upper eight bits of
address that determine which one of
the 256 possible DRAM 1locations is
cached (16-Mbyte => 24 address bits,
24 - 16 => 8). When a memory access
occurs, the lower sixteen address
bits select an entry in the Tag RAM.

46

The tag RAM data is compared to the

upper eight bits of the current
address. If the compare is
successful, the desired memory entry
is in cache, if not, the cycle is a
miss,

2.3.3 Read Only Memory
6U4-Kbytes of EPROM are installed on
the node. This EPROM contains the

node confidence tests (NCTs), as well
as the boot loader.

2.4 Routing Logic Interface

2.4.1 Philosophy

The iPSC/2 node was to be as
independent of communications
technology as possible,. This was
done to allow future routing

technologies to be used with today's
node, allowing existing hardware to
be re-used, and faster time to
market. To this end, a generic
interface has been designed to
connect the node memory subsystem
with the routing logic, that attaches
via a surface mount daughter card.

The routing logic interface to the
node is a simple 32-bit wide DMA
interface which supports transfers
between the routing module and node

memory. It ‘'steals' cycles from the
80386 for the transfers, and can
burst at a rate of 10.7 Mbytes/sec.

On the 1iPSC/2 system, the routing
logic daughter card 1is called the
Direct-Connect™ module (DCM). Each

DCM contains eight serial channels,

implementing, together with the back-
plane, a hypercube interconnect
topology. The DCM is a surface mount

board containing thirteen

programmable gate arrays.
2.4.2 Balanced Data Rates
The DCM has sixteen channels, eight

in and eight out, which connect the
node to its eight nearest neighbors.

47

Each DCM channel can sustain a data
rate of 2.8mbytes/sec, independent of
other channels. The data will only
become invasive to a particular node
if it is sourced by, or must sink to
that node.

Since the node can source or sink the
routing logic at a burst rate of
10.7Mbytes/sec, it is nicely balanced
with the interface, being roughly
twice the 65.6Mbyte/sec rate
(2 X 2 8Mbyte/sec) required to keep
up with messages coming in and out of
the DCM simultaneously.

For more information on Direct-
Connect routing, see the paper within
these proceedings entitled: "The
iPSC/2 Direct Connect Technology'", by
Steve Nugent [1].

2.4.3 Physical Connections

There are two 96-pin connectors on
every node, that plug 1into the
backplane. One 1is dedicated to
communications, the other is
dedicated to the standard bus
interface. The routing logic
interface consists of two 100-pin
surface mount connectors which secure
to the node board.

Except for power, ground and the
diagnostic link bus, all
communication pins are 1left

unspecified by the node and are
simply connected to the routing logic
interface, leaving the personality of
the pins up to the routing logic
module.

2.4.4 Data Transfers

Data transfers across the routing
interface are controlled by an 82258
Advanced DMA controller (ADMA), which
arbitrates with the 80386 for the
memory system. Two DMA channels are
provided, one for node to routing
logiec transfers, the other for
transfers in the opposite direction,
While both channels share the same

physical bus, transfers in and out of
the node can be interleaved,
logically occurring at the same time,
The 82258 ADMA controller is quite
flexible, able to handle any size
transfers, limited only by the amount
of memory installed.

Transfers from the network to the
node are initiated by the routing
logic module. When the routing logic
module has data to be transferred
into node memory, it requests a
routing 1logic read from the DMA
controller by asserting a DMA request
signal. The ADMA will reply with a
DMA acknowledge, and initiates the
cycle for as long as the request is
held active.

Transfers from the node to the
routing logie are done in similar
fashion. The DMA controller asserts

a DMA request signal to the routing
logic, which will respond with a DMA
acknowledge when free to take data.

2.5 Standard Bus Interface

The iPSC/2 node features a standard
bus interface which 1is tightly
coupled to the 80386 CPU bus. The
intent is to provide a mechanism to
attach option boards of popular buses
to the 1iPSC/2 node. The slot
adjacent to the node is populated by
the option board, possibly via a
small bus adapter board, depending
on the native bus of the option
board.

To attach a companion board to the
system, the odd slot adjacent to the
node board contains the companion
board, and not another node board.
As an example, a iPSC-D4Y/VX machine
has 16 nodes, each made up of an
iPSC/2 node board and a VP board.
The node boards are in the even slots
of the chassis, and the VP boards
reside in the odd slots.

48

2.5.1 ILBX™-II INTERFACE

The 1PSC/2 node can be configured to
directly interface to any Multibus-I1I
board which supports the LBX-II
subset. A good example of a use for
this bus |is the VP Vector Co-
Processor,

The LBX-II interface is a subset of
the the Intel Multibus® II standard.
It is a synchronous bus, which can
support as many as six agents, two
requesting agents and four replying
agents (synonymous with master and
slave respectively). The 1PSC/2
machine restricts this to one
requesting agent, the node, and one
replying agent, normally the iPSC/VX
vector processor. Such as:

The LBX-II supports
8-bit transfers.
enabled by a

32-, 16- and

LBX memory is
control bit under
software control. Once enabled, LBX
memory starts at address 8000000H,
and uses the upper B8Mbyte space of
the node's 16Mbyte space.

The LBX-II interface can burst data
up to 8M bytes/sec, but is of course
limited by the speed of the attached
board.

3 LEDs

In keeping with the monumental
importance of LEDs on scientifiec
machines, here 1lies a brief but
detailed description of the node
LEDs.

Three LEDs are mounted on the front
panel of the node. The colors are:
red, green, and yellow. The red and
green LEDs are wunder software
control. The amber LED is hardware
dedicated to indicate that a numeric
co-processor is active.

The red and green LEDs are typically
used by the node in two modes:

--Reporting results of the node
Confidence Tests upon their
invocation by power up or system
diagnostics, The red LED to
indicates failure, the green
indicates all tests passed.

--During normal run time, the
node executive NX/2 uses the
green LED to indicate normal
computation mode, while the red
is used to indicate
communication to another node is
transpiring.

4 Initialization and Reset

Upon power
processor

up or reset, the node

executes on-board
diagnostics. If the node passes the
NCTs, it enters a firmware resident
boot monitor, and receives a download
of the node Executive (NX/2) from the
Systems Resource Manager (SRM) via
‘the DCM routing logic.

After the node has received it's copy

of NX/2, it begins executing it from
RAM. NX/2 initializes on-board
hardware as required, then enters

normal system mode, At this point,
NX/2 awaits download of application
code from the SRM, again via the
Routing Logic Interface.

iPSC/2
80387
Dhrystone
Drystones/Sec.: 7812
Whetstone
Single Precision KWIPS 1498
Double Precision KWIPS 1299
Daxpy
MFLOPs for N = 1 0.05
MFLOPs for N = Infinity 0.14
Linpack
MFLOPs for 100 X 100 0.16
MFLOPs for 300 X 300 0.16
MFLOPs for 1000 X 1000 0.16

49

5 Measured Performance

The performance numbers given here
reflect measurements taken on the
iPSC/2 Beta release 1.0 software.
Intel Scientific Computers expects
some increases in performance as
message passing software is tuned.

The data reflect three different
configurations of the iPSC/2:

iPSC/2 node with
80387. In this configuration
the numeric processing is
provided by an Intel 80387.

1. A single

2. A single iPSC/2 node with
the SX Scalar Floating Point
module. In this configuration
the 80387 is augmented with the
SX module. As can be seen, this
gives 2- 2.5X the performance of
the 80387 configuration.

3. A single iPSC/2 node with
the iPSC/VX Vector Co-processor,

Performance numbers for a VAX-11/780

have been included as an industry

standard reference.

iPSC/2 iPSCs2 VAX-11/1780

SX VX

7936 NA 1562
3501 NA 1133
2206 NA 727
0.07 0.06 NA
0.30 2.60 NA
0.33 1.43 0.14
0.34 2.37 NA
0.34 2.50 NA

iPSC/2 iP3C/2 iPsC/2 VAX-11/780

80387 SX VX
Livermore Loops

Mean Node Speed

DP MFLOPs for N = 17 0.15 0.25 NA NA
DP MFLOPs for N = 90 0.15 0.26 NA NA
DP MFLOPs for N = 471 0.15 0.26 NA NA
Peak Node Speed

DP MFLOPs for N = 17 0.21 0.63 NA NA
DP MFLOPs for N = 90 0.18 0.60 NA NA
DP MFLOPs for N = 471 0.25 0.61 NA NA

References

[1] Nugent, Steve, TheiPSC/2 Direct-Connect Technology, Proceedings, 3rd Conference
on Hypercube Concurrent Computers and Applications, 1988.

50

The iPSC®/2 Direct-Connect™
Communications Technology

Steven F. Nugent

Intel Scientific Computers

ABSTRACT

This paper describes the hardware architecture and protocol of the message
routing system used in the iPSC®/2 concurrent computer. The Direct-Connect™
router was developed by Intel Scientific Computers to replace the store-and-
forward message passing mechanism used in the original iPSC system. The
router enhances the performance of the iPSC/2 system by reducing the message

passing latency, increasing the node-to-node channel bandwidth and allowing
simultaneous bidirectional message traffic between any two nodes. The new

communication system has nearly equal

performance between any pair of

processing nodes, making the network topology more transparent to the user.

The Direct-Connect router is a specialized self-contained hardware module

attached to each hypercube node.

The router is implemented in CMOS

programmable gate-arrays with advanced CMOS buffering. Routers are connected
by full-duplex bit-serial channels to form a boolean n-cube network. The
router also provides a high performance interface between the node memory bus

and the network.

INTRODUCTION

The Direct-Connect router is a
hardware controlled message passing
system. It forms the basis for the
message passing system of the iPSC/2
second . generation concurrent
computer. When interconnected to
form a hypercube network, Direct-
Connect routers provide the means to
pass messages of arbitrary size
between pairs of computational
"nodes" which interface to the
routers,

Permission to copy without fee all or part of this material is grapted
provided that the copies are not made or distributed for ‘dlrect
commercial advantage, the ACM copyright notice and the mle.of
the publication and its date appear, and notice is given tha} copying
is by permission of the Association for Computing Machinery. T'o
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© ACM 1988 0-89791-278-0/88/0007/0051 $1.50

51

The routers form a circuit-switched
network that dynamically creates a
synchronous path, from a source node
to a destination node, which remains
open for the duration of a message.
The path is composed of a series of
channels that form a unique route
from the source node to the
destination node and may pass through
some number of intermediate routers
associated with other nodes. When
more than one channel constitutes a
path, this 1is referred to as a
"multi-hop" route,

Channels are bit-serial and full
duplex and connect nearest neighbor
nodes. The Direct-Connect router
supports connections for eight full
duplex channels and can be
interconnected to form networks of up

to seven dimension containing 128
nodes. Each of the eight channels is
routed independently allowing up to
eight messages to be routed
simultaneously. One channel per
router 1is dedicated to act as an

external path into the network and
allows remote devices to access the
full routing capabilities of the
network. The router communicates
with the node over two unidirectional
parallel buses.

Routing 1is based on the e-cube
routing algorithm [6,7], which
guarantees a deadlock free network.
Paths are dynamically constructed for

each message prior to its
transmission. A complete path is
built in a step-by-step process

involving arbitrations for additional
path segments at each router. The
channels that constitute a path are
held for the duration of the message.
When a destination node is ready to
accept a message, transmission
begins. A channel 1is released when
the tail of a message passes between
the routers connected by that
channel.

Direct-Connect routing is a variation
of Wormhole routing (1,2] with the
primary difference being that with
Direct-Connect the message is
transmitted after the route has been
built. This difference allows the
system to operate completely
synchronously and eliminates the need
for flow control buffering in the
intermediate routers of a multi-hop
route [4].

Because messages are routed
independently by hardware, the iPSC/2
message passing latency is
significantly reduced over the
original iPSC system, The message
passing system employed 1in the
original iPSC hypercube used a store-
and-forward packet-switching
technique which was typical of first
generation hypercube machines. Using
this technique, message packets were

52

stored in their entirety and re-
transmitted at each intermediate node
of a multi-hop path, This led to
long message route times and also
interrupted ¢the ©processes of
intermediate nodes in the path that
were not recipients of the message.

The Direct-Connect router allows
messages to route through
intermediate nodes without
interrupting processes on those
nodes. Messages encounter minimal
delays in routing through

intermediate nodes and so the transit
time of a multi-hop message is only
marginally longer than a single hop.
As a result the details of the
network topology are virtually
invisible to the user. It appears to
be a fully interconnected network and
consequently the mapping of
applications is greatly simplified.

The Direct-Connect router has been
implemented using programmable gate-
arrays and is fully contained on a 4"
by 8" daughter card that attaches to
the iPSC/2 node card. This assembly
is referred to as the Direct-Connect
Module or DCM.

Hypercube Nomenclature

The 1iPSC/2 system consists of a
collection of single board processors
or '"nodes" interconnected with full-
duplex bit-serial channels to form a
hypercube. 1In a hypercube where each
node has N nearest neighbor nodes the
system is said to have dimension N.

Figure 1 illustrates the channel and
node naming convention used in a
iPSC/2 hypercube of dimension 3.

The nodes are assigned unique
addresses 50 that the address of any
two nearest neighbor nodes differ by
one binary digit. The channels that
connect nearest neighbors are named
for their corresponding dimension.
The dimension of a channel between
two nodes is determined by taking the
binary exclusive--or of the two node

addresses, The bit position that
remains a one 1is the dimension of
that channel, For example, the

channel connecting nodes 5 and 7 is
determined by the exclusive or of 111

and 101. The result 1is 010 and
because the "one" is in bit position
one, that channel 1is in dimension
one.
NODE 7
111
CHNL 0
NODE 6 CHNL 1
110
NODE 5
CHNL 2
NODE 2
010 CHNL 2
NODE 0
000
DIMENSION 3 HYPERCUBE
Figure 1

Router Architecture
Message Paths

As shown in figure 2, the router is

actually composed of eight
independent routing elements, one for
each of eight 1incoming channels
(numbered 0-7). These routing
elements dynamically create message
paths through the DCM's, Each

routing element is capable of driving
several outgoing channels, one at a
time (the connectivity is defined by
the e-cube [6,7] routing algorithm).
Since more than one routing element
may request the same channel
simultaneously, an arbitration
mechanism for each channel resolves
the conflict fairly.

The node interface consists of two
unidirectional parallel channels,

53

node source and node sink. All
routers may request the node sink
channel and likewise the node source
channel has access to all outgoing
channels.

The channel seven routing element is
special and 1its routing algorithm
does not operate like channels 0-6.
It acts instead as a repeater for
external node source and sink
channels. This provides an 1I/0
gateway into and out of the network
for remote devices such as disk
farms, graphics devices and real time
I/0. 'Node O channel seven serves as
the host interface.

Node source channel
-]
-] N o Cho out
Serializer 7]
Cho I ——me3- S tm out
Cho routing slement | 17 ﬁ’ r
cn |n—¢ é— Ch2 out
Chi routing elament |17 b
CA2 in ;AJ_ Ch3 out
Cha routing etement ||)
ch3 in ene out
Ch3 routing element "‘ t é_—
Ché In
ChS out
Cha routing element |] ﬁ_
ez P S
Chs rouiing element | =
che |n¢_ rﬂ
Chs routing element cht owt
Ch7 m% s
ChT routing slement |)
Deserlailzer M
Node sink channe)

Router Architecture

Figure 2
Status Paths

In addition to the primary message
paths, there is a secondary path, the
status path, that routes status from
the destination to the source of each

message. The status path is
necessary to provide flow control for
messages. To pass status between
routers, status information 1is

multiplexed onto the channels during
message transmission, In the absence
of messages, status information is
passed continuously.

The status
functionally
Switch,

path within a router
consists of a Status
Status Generators, and

contained within the routers,
DESTINATION READY registers and SEND
STATUS 1logic. As illustrated in
figure 3, the organization of the
status path allows DESTINATION READY
bits received at the routers to be
passed to other specific routers to
be re-transmitted as SEND STATUS.:
Each DCM is capable of routing status
information for eight simultaneous
messages.

The dynamic connectivity of the
status switch is controlled by the
channel grants from the arbiters.
Consequently, the connectivity of the
status paths 1is determined by the
current message routing. Using this
mechanism the status generated at the
message destination can make its way
back to the source by passing through
intermediate routers along the path
in the opposite direction from the
message.

Grards (from Arsters)
o in — ot '—‘-‘",: oo
el LD 1] Senni T o ou
g‘;:_% A1 /—-‘ RS oh2 ot
=" am1 - LS. Chaout
G T Stakn [Berd .y w2 [
mm-—% —]] Swich —_] Chd ot
Crsin 7“) —_ A4 ChS ot
Che In —=== AR wn g Che ou
Ch7 in ——pmes— P | om 4 Cn7 ot
T L d RTRY
v Snet Gaos
Routers are spil 1or sty ———— S Deser
Dessunagion

DCM Status Path

Figure 3

The origin of the ready status is the
destination nodes Deserializer which
generates this signal based on the
reception of a routing probe and the
status of the receive FIFO. After
passing through any intermediate
DCM's the signal arrives at the
source DCM Serializer as an ALLOW
DATA control signal. Allow data, as
the name implies, controls the
transmission of data from the source
DCM Serializer,

The purpose of the Status Generator
is to generate status in the absence
of message traffic, It transmits the

54

same SEND STATUS as the routers on
all channels that are idle, An idle
channel is one that is not currently
reserved for a message.

Channel Description

The Direct-Connect channel physically
consists of four conductors that
connect each of the nearest neighbor
nodes. One pair of conductors is
driven in only one direction and the

other pair only in the opposite
direction. The pairs operate
independently of each other. Figure

I illustrates the connectivity
between nearest neighbor nodes.

Stroba out chd trobe in cho
Data out ¢h0 Data in ch0

Strobe out ch0

Strobe in ch0

PHYSICAL CHANNEL

Figure 4

Serial data,
are transferred

control and status bits
across the data

lines. The strobe lines are used to
validate the data 1lines and also
provide a clock source for the

subsequent router, Both rising and
falling edges of the strobes validate
the data lines. Figure 5 illustrates
the physical level channel timing.

Strobe out I | ‘ | [| l | |

ot YK\ OOCO000C
Strobe in | l l \ [| l | |

Channel Timing

Figure 5
The system 1is clocked wusing the
strobe lines. Each message path is
completely synchronous. This means
that different messages are not

synchronous to each other but that
all intermediate logical elements
involved in routing a particular
message are synchronous. When
message data is routed through a DCM,
the associated Strobe also takes the
same route. Therefore, once the
route 1is established, the original
Strobe from the source DCM actually
clocks the entire data path from
source to destination.

The main advantage of ‘one-way"
channels over full handshake
protocols is that the transfer rate
can be much higher. Transfer rates
of handshake channels suffer because
of the latency caused by end to end
acknowledgements and the fact that
speed degrades as the channels are
made physically longer. The use of

FIFO buffers at the message
destinations and synchronous channels
eliminates the need for handshake
protocols, Consequently, the
throughput is not a function of
channel 1length or acknowledgment
delay. It is possible to build a

reliable channel that uses wormhole
routing techniques without using a
handshake protocol.

Channel Protocol

A hardware level of protocol exists
between nearest neighbor routers in
order to provide a means of passing
control and status information. Two
status/control bits are passed on a

continuous repetitive basis whether
or not message transmission is
occurring. These bits are END OF

MESSAGE (EOM) and READY STATUS (RDY).
The EOM bit indicates that the last
word of the message has been
transmitted and is ignored unless a
message is in progress. The RDY bit
represents the state of readiness of
the destination node of an
established path,

Two formats exist to allow the EOM
and RDY bits to be interspersed
Wwithin messages or to be passed in

55

the absence of message traffic.
These formats provide a convenient
way of identifying the EOM and RDY
bits so that they may be stripped off
and processed at each router. The
status only format is termed the
"status nibble" and consists of four
bits, the first two being ones
indicating a status only transfer and
the last two being the RDY bit and a
don't care. These status nibbles are
repetitively transmitted by all
routers in the absence of data
transfer, Tne data format also
contains four bits of non-data
information. The first two bits are
zeros indicating that a message is in
progress and the last two are the RDY
bit and the EOM bit. The data and
status nibble formats are illustrated
in figure 7.

MSB LSB
DDDDDDDDDDDDDDDDE ROO
AAAAAAAAAAAAAAAABROD
TTTTTTTTTTTTTTTTMY
AAAAAAAAAAAAAARAAASN
DATA FORMAT
MSB L.SB
XR 11
D X = Dont care
Y

STATUS NIBBLE FORMAT
Figure 7

The RDY bits are stored as they are
received at each router in
"Destination Ready" registers. These
form the basis of the message flow
control mechanism used in the system,

The reason that there are two "start
bits" on both the status and data
formats 1is that the message is
processed in two halves in the
routers. The odd numbered bits are
handled independently from the even
numbered bits in the router in order
to achieve higher data rates than

would otherwise be possible
performance of the gate arrays.

given

Because status information 1is
interspersed with message data, the
end of message can easily be detected

by routers on the fly. This
eliminates the need for a message
size counter in the routers and

thereby removes any limits to maximum
message size.

Message Routing
Routing Algorithm

Each message involves one sending
node and one receiving node. The
routes that messages take through the
network are unique between any two
nodes, The combination of channels
that compose a path are defined by
the e-cube routing algorithm [6,7].
Using this algorithm guarantees that
no circularities will occur in
message routing and thus prevents
hardware deadlock from occurring.

The algorithm states that in order to
guarantee deadlock freeness, messages
in hypercubes can be routed 1in
increasingly higher dimensions until
the destination 1is reached. The
channel numbering defined in the
Hypercube Nomenclature section
corresponds to these dimensions.
Paths may consist of increasingly
higher numbered channels but may not
necessarily be contiguous. Routing
to lower numbered consecutive
channels 1is not allowed. For
instance, a path may consist of
channel 0 - channel 2 - channel 3
which involves the DCM's of nodes 0,
1, 5 and 13. In this case the source
DCM 1is at node O, the intermediate
DCM's are at nodes 1 and 5 and the
destination DCM is at node 13.

Routing Operation
A routing operation can be broken

into four phases: establishing a
path, acknowledgement, message

56

transmission and releasing
connections. To initiate the routing
of a message, the source node must
transfer at a minimum one 32 bit word
to the DCM. The low order 16 bits of
this first 32 bit word must contain
the ROUTING PROBE. The routing probe

contains addressing information and
is used to establish the connections
that make up the path that the

message must take. The high order 8
bits of the routing probe must be all
zeros as shown in figure 8.

DIMENSION

-------- 76543210
00000000XXXXXXKXX
MSB LSB

Routing Probe
Figure 8

The value of the routing probe is
calculated by taking the exclusive or
of the binary address of the
destination node with that of the
source node. Each bit of the routing
probe corresponds to a channel that
the message can be routed on.

The first segment of the path |is
established when the Serializer 1in
the source DCM requests the outgoing
channel that corresponds to the
lowest order bit set in the routing
probe. These requests are arbitrated
by the local DCM. The DCM arbitrates
between local requestors for the same

channel and grants one at a time
using a "round robin" arbitration
scheme.

When the channel 1is granted, the

routing probe is sent by the source
DCM before any message transmission
takes place.

For example, if a routing probe is
transferred to the DCM in which bit N
is the lowest order bit set, channel
N will be requested. When the DCM
grants channel N, the routing probe
will be transmitted to the

intermediate DCM that is the nearest
neighbor on channel N.

Upon receiving the routing probe, the
intermediate DCM will store it and
discard the upper 8 bits of =zeros
creating a short routing probe. The
discarded bits will be reconstructed
at the destination DCM. The short
routing probe will be passed between
intermediate DCMs reserving
additional segments of the path, Its
format is shown in figure 9.
DIMENSION 76543210
XXXXXXXX
MSB LSB

Short Routing Probe

Figure 9
The intermediate DCM's examine bits
N+1 to 7 in the short routing probe

to determine the lowest order bit
that is set. The outgoing channel
that corresponds to the bit that is
set will be requested and the short
routing probe will wait. When the
outgoing channel is granted the short
routing probe will be transmitted to
the next DCM in the predefined path,
As illustrated in figure 10, this
process Will repeat until the routing
probe is received by the destination
DCM.,

Dastination node

Nods
1

Channel N Channel 1

N

\

N

N Intermediate node

Node
3

sasan Path of routing
probe
{ogical status
connection

Phase 1: Establishing a path

figure 10
After the routing probe is absorbed
at the destination, it will be padded
with 8 zeros to restore it to its

57

original state. If the destination

DCM can accept a message, it will
signal an acknowledgement, the RDY
bit.

This begins the acknowledgement phase
of the routing operation. The
acknowledgement phase requires that a
deterministic connection be made from

the destination DCM back to the
source DCM for the purpose of
carrying flow control information.

This is termed the "status path" and
follows the message path exactly but
in the opposite direction, from
destination to source, The status
path is established as a result of
forming the message path.

For example, if a message is being
routed from CHANNEL 2 IN to CHANNEL 4
OUT at an intermediate DCM, a
connection from CHANNEL 4 1IN to
CHANNEL 2 OUT is made for status
propagation. This status connection
is not a wired path between nodes
like the message path but consists of
transferring the status information
received on one channel to the sender

on another channel.
_DCM

m

Channel 1

Channel 1
=g
Figure 11

The status path like the message
path maintains its connection for the
duration of the message. Once the
RDY bit is set at the destination of
the message, figure 11 1illustrates
how it propagates over the channels
opposing the message path through the
intermediate DCMs until it reaches
the source DCM.

rrrres

Channei 1 Channet 1 »

1222224

\\\Q’{'{‘Q\'gxx\\.

Phase 2: Acknowledgment ammwm Status path

saaae Reserved message

When the RDY bit finally reaches the
source node then transmission of
status nibbles will cease and the
message transmission phase may begin.
The source DCM can transmit data
continuously into the network (in the
format described in the channel
protocol section) until the end of
message 1is sent or a not ready
indication is received over the
status path. Figure 12 depicts the
message transmission phase, The
message 1is not buffered the
intermediate DCMs.

in

ocM

Node Node

Channed Channel 1 Channet 1

Serial data —

Channal 1

Paraliet data

Node

Node
2 Channei 0 3

() " DCM
Phase 3: Message Transmission

S Status path

sanas Message path

Figure 12

If the source DCM receives a not
ready indication from the destination
DCM, it will discontinue transmitting
data and resume transmitting status
nibbles. This 1is referred to as
"throttling" and provides end-to-end
flow control for the network. After
a message 1is throttled, status
nibbles will flush the message out of
the network completely. When RDY is
again detected at the source DCM, the
transmission of status nibbles will
cease and message transmission will
resume. The DCM's are able to absorb
any data that is in transit on the
network or cabling because there are
FIFO buffers at the receiving DCM's.
Therefore, when a message is
throttled, no data bits will remain
stored on the network but will be
absorbed at the destination DCM.

To complete a routing operation the
source DCM appends a checksum word to

58

the message with the EOM bit set in
its associated status. The checksum
provides a means to verify message
integrity in order to detect hardware
failures should they occur. As shown
in figure 13, the transmission of the
checksum word/EOM causes the source
DCM to release the outgoing channel
reserved for that message. Likewise,
at each intermediate DCM in the path,

the channels reserved for that
message are released on the fly as
the checksum 1is transmitted on.

Those channels are then free to be
used for other messages.

Channel

Channet t

T Message path
Phase 4: Releasing connections
ammams Statys path

Figure 13

At the destination DCM the reception
of the checksum and EOM bit allows
the message integrity to be checked
and the end of message indication to
be passed to the node. Since the
checksum is not part of the original

message, it is stripped off at the
destination DCM and its state stored
for further inspection at the
destination node.

Performance
Direct-Connect routing has both
increased hardware bandwidth and
reduced latency over the original

iPSC computer. To give a qualitative
feel for the performance achieved,
some actual data points have been
plotted using the beta level software
and hardware of the iPSC/2 system and
data from the first generation iPSC
system. A simple program called

"echo" was used to gather the data in
which only two nodes are involved and
alternately send messages to each
other. No contention effects will be
exibited in this example. Overall
bandwidth and 1latency (software,
hardware and message transit time
between processes) have been plotted
as a function of message length for
nearest neighbor (1 hop) and multi-
hop (5 hop) cases. Since in both the
bandwidth and 1latency plots the
primary difference between the single
hop and five hop <cases 1is the
contribution of the message passing
hardware, it becomes obvious that
this contribution is small compared
to the software contribution. In
fact the latency due to hardware is

Multi-hop Bandwidth

25

B -t
2| psczethee e
n PSCR-1hop T
a e
w 20+
i
a | |
h iPSG/2 - § hops
h
15 ¢
i
n
M
s VOF
y
" iPSC/1 -1 hop
s -
I 5 B
S e
¢ IPSC/1 - 5 hops
: ° == ! — L A A 3
[¢] 2 4 8 8 10 12 14 18

on the order of 5% of that due to
software, The latency plot indicates
that the iPSC/2 latency is less than
one-fifth the latency of its
predecessor, the iPSC/1 system.

The most dramatic effect of Direct-
Connect routing on the bandwidth,
other than a general increase due to
faster channels and more efficient
protocol, can be seen in the short
message portiocn of the plot. In this
region the iPSC/1 system pays a
significant penalty for sending a
short message many hops whereas it is
obvious in the iPSC/2 system case

- that the effect of single hop versus

59

multi-hop is insignificant on overall
bandwidth.

Multi-hop Messsage Latency

asr -
iPSC/ -Shops -

30

25
iPSC/1 - 1 hop

20

»3 3T =OJe~mr

0 2 . 6 8 10 12 14 18
Message length (kbytas)

Conclusions

The benefits of Direct-Connect routing technology in hypercubes have been
enumerated. It has been shown that the benefits of wormhole routing can be
achieved using an implementation that is completely synchronous rather than the
self-timed implementations of [2, 3]. It has been shown that networks can be
built that can be extended over significant physical distance without the need
to change signalling protocol. It can be derived from the performance results
that the efficiency of the Direct-Connect technology results in latencies that
are insignificant compared to the software necessary to service messages in the
iPSC/2 model of medium-grained computing. In other words, for this model of
computation, further increases in the performance of the message passing
hardware will yield little in terms of system performance. Future computing
models, however, such as [5] that reduce software overhead to take advantage of
fine-grained decompositions will require even lower hardware latency, as this
again becomes a more significant part of the performance equation.

Ref'erences

[1] C. L. Seitz, et al., The Hypercube Communications Chip, Dept. of
Computer Science, California Institute of Technology, Display File
5182, March 1985.

[2] W. J. Dally, A VLSI Architecture for Concurrent Data Structures, Ph.D,
Thesis, Department of Computer Science, California Institute of
Technology, Technical Report 5209, March 1986.

[3] C. Flaig, VLSI Mesh Routing Systems, Dept. of Computer Science,
California Institute of Technology, Technical Report 5241, May 1987.

[4) P. Kermani & L. Kleinrock, "Virtual Cut-Through: A New Computer
Communication Switching Technique", Computer Networks, Vol 3., 1979,
pp. 267-286.

(5] W. C. Athas & C. L. Seitz, The Cantor User Report, Version 2.0,

Dept. of Computer Science, California Institute of Technology,
Technical Report 5232, Jan. 1987.

[6] C. R. Lang Jr., The Extension of Object-Oriented Languages to a
Homogeneous, Concurrent Architecture, Dept. of Computer Science,
California Institute of Technology, Technical Report 5014, May 1982.

[7] H. Sullivan & T. R. Bashkow, "A Large Scale Homogeneous Machine",
Proc. Uth Annual Symposium on Computer Architecture, 1977, pp. 105-124,

60

The NX/2 Operating System

Paul Pierce

Intel Scientific Computers

Abstract

NX/2 is the operating system which runs on the nodes of the Intel iPSC®/2
concurrent supercomputer. NX/2 provides all of the standard system services
found in the original iPSC node operating system, such as memory management,
multiple process control, message passing services, and intertask protection.

This paper focuses on the major node operating system enhancements brought
about by two different requirements. First, NX/2 had to support very high
speed and high throughput message passing. In this regard, we show how NX/2
was tuned to the 32-bit architecture of the iPSC/2 nodes and the Direct
Connect™ technology used to implement the communication Subsystem.

Second, NX/2 had to support a more streamlined and flexible set of message
passing service calls. In this regard, we describe the new set of message
passing system calls and discuss how NX/2 implements them. The calls range
from a simple, effective set of synchronous calls to advanced asynchronous
calls which allow overlap of message passing and processing as well as
interrupt-driven message handling.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© ACM 1988 0-89791-278-0/88/0007/0384 $1.50

384

1. Introduction

The NX/2 operating system runs on
each node of the 1Intel iPSC/2
concurrent supercomputer. This is a
second generation distributed memory,
message passing parallel computer
based on the Intel 386 microprocessor
and the proprietary Direct Connect
communications subsystem. It shares
with the first generation iPSC
computer a microprocessor from the
same 1APX 86 family and the hypercube
interconnection scheme,

The new operating system also shares
the same general approach as the
earlier system, oriented toward
program-directed message passing with
multiple processes per node.
However, the details of the process
model in the new operating system are
quite different due to the 32-bit
capability of the processor. The
message passing system calls were
also revamped to increase programming
convenience and flexibility.

2. General Features

The operating system and applications
run on the 386 in full 32-bit Native
Mode, The system is written almost
entirely in C, with the obligatory
few parts in assembly language for
performance and access to privileged
instructions. There are
approximately 20,000 1lines of C,
resulting in 90K bytes of code.

2.1 Addressing

Each application process has a 1
Gigabyte flat virtual address space
implemented via the 386 paging
hardware, There may be up to 20
processes on each node, each with a
separate address space. Code and
data may occupy any part of the
address space limited only by the
available physical memory. NX/2 uses
paging to manage the physical memory
and individual process virtual
address spaces, but does not provide

virtual memory, in that every page in
use by a process must reside
somewhere in physical memory as long
as the process exists.

1GB
Stack
Data
Code
0

Virtual Address Map

In a typical application, 1ld (the
standard Unix* linker) assigns code
addresses around 0 in the virtual
address space, and data addresses
starting at 400000 hex. The NX/2
loader reads the Unix COFF
(Compatible Object File Format) file
and places code and initial data in
physical memory pages. The loader
then maps the pages to the
appropriate virtual addresses and
allocates a stack at the top of the
address space. Additional pages may
be mapped to the process if it calls
for them via the standard memory
allocation routines such as sbrk()
and malloc(). Each process has its
own address space, but all processes
share the same pool of pages in
physical memory.

2.2 Numeric Coprocessors

NX/2 also manages the numeric
coprocessors (387, SX, or VX) for
each process. In the case of the 387
or SX (Weitek 1167), each process has
its own coprocessor state. The
system saves the old state and

385

restores the new state when, after a
process switch, the new process
attempts to access the coprocessor.
Since there is a relatively large
state for each coprocessor, this
technique saves context switch time
in the case where only one of several
processes is actually doing floating
point computations.

The VX vector processor is managed
more simply by restricting use to a
single process, If an attempt is
made to load two processes which need
access to the vector processor, the
second attempt will fail unless the
first process has terminated.

2.3 Direct Connect Interface

NX/2 operates the DMA controller
which controls the Direct Connect
message passing hardware. For each
message sent, the system software
realigns the message data to 32-bit
boundaries (the message passing
hardware is limited to operation with
word-aligned data), generates a
message header, and sets up the DMA
controller for header and data
transmission. The DMA controller
generates an interrupt when the
complete message enters the network.
From that point, the Direct Connect
hardware will ensure reliable
delivery of the message to the
destination node.

Message reception follows the same
basic steps in reverse. The DMA is
kept set up at all times with a place
to put a complete message. When a
message arrives, an interrupt is
generated and the system interprets
the message header. When necessary,
the system realigns data in the
receive buffer.

NX/2 controls the destination of each
message by generating a byte of
routing information which is
interpreted by the Direct Connect
hardware, When the cube 1is
partitioned into subcubes, the system

software translates subcube node
numbers (which are numbered starting
at zero for each subcube) into
physical node numbers when messages
are sent, and translates back when
messages arrive,

3. Message Protocols

NX/2 provides flow control and
message buffering. This removes much
of the burden of deadlock prevention
from the user. A common situation
arises in some applications when
several nodes send messages to a
single node. This occurs even in
fairly well-synchronized
applications, where a node will
interchange messages with only one
other node after each phase of
computation, If, for one reason or
another, a node gets behind other
nodes in its computations, the other
nodes can send it messages which are
from phases in its future. In order
for the node to proceed, it must be
able to receive the message for its
next phase even if there are other
messages waiting. In addition, these
other messages must not be lost,
since they will be required
eventually.

NX/2 provides two levels of protocol
to avoid deadlock in this kind of

situation. The lowest level is based
on very short messages, and the
higher 1level covers all longer
messages. The protocols are also

designed to deliver high performance.
They rely on the reliable message
passing capabilities of the hardware,
which has its own even lower level of
protocol for establishing a route and
providing limited flow control and
buffering.

3.1 Short Messages

Messages of 100 bytes or less,
including both application messages
and operating system control
messages, use a one trip protocol.
There are a large number of short

386

message buffers maintained by the
operating system. Each node
allocates some of these buffers to
each other node. When a node has a
short message to send to another node
and there is a buffer reserved for
it, it simply sends the message. If
the reserved buffers have been used
up, it holds the message until
buffers are returned. Nodes keep
track of incoming messages and
periodically return the buffers to
the originating nodes. Often, the
number of buffers returned can be
piggybacked on a returning message.

The 1latency between the time a
process sends a null (0 byte) message
from one node and a process on a
neighboring node receives it is about
350us. Non-null messages up to 100
bytes take slightly longer due to the
time required to parameter check the
buffer pointers in the send and
receive calls and the time to copy
the data. Control messages sent
between nodes from within the
operating system take less time.

3.2 Long Messages

Messages longer than 100 bytes use a
three-trip protocol. In the first
step, the system sends a control
message which serves as proxy for the
entire message. The proxy can be
saved in a short message buffer on
the receiving node until there is a
place for the whole message. If
there is a receive posted for the
message, or there are enough free
pages of memory to contain the entire
message, the system sends back a
control message requesting that the
rest of the message be sent. It also
sets up the DMA controller to place
incoming message bytes beyond the
size of a short message in the
receive buffer. When the sending
node receives the request message it
immediately sends the entire long
message.

Because of the way the DMA is set up,
the first 100 bytes of a long message
are received into a short message

buffer, This ensures that short
messages arriving ahead of the long
message are treated properly. The

rest of the long message is DMA'ed
directly into the receive buffer.
The system then realigns the data if
necessary and copies the first 100
bytes.

This protocol provides flow control
and controlled buffering by requiring
only a short message buffer on a
receiving node regardless of the size
of an incoming message. In addition,
the practice of sending the entire
message at once eliminates a

performance «ceiling imposed by
packetization. This means that
message passing bandwidth
asymptotically approaches the

hardware bandwidth of 2.8 Mbyte/sec
as the message size increases. In
fact, very large messages do achieve
over 2.7 Mbyte/sec rates.

4. Application Interface for Message
Passing

Applications access the message
passing capabilities of the system
through system calls. NX/2 provides
nested sets of system calls with a
range of complexity and power. At
the lowest level, there is a complete
set of simple blocking calls and
information calls. Another level
provides asynchronous calls for
overlapping processing with message

passing., The final 1level contains
calls for interrupt-driven message
passing.

Calls from different 1levels can be
freely mixed, and in fact the higher
levels rely on calls in lower levels.
For example, a message sent with an
asynchronous call can be received
with a simple blocking call or an
interrupt-driven call, In general,
the lower level calls are simpler to
use and consume less processor time,

387

while the higher level calls provide
more capability (and therefore more
opportunity to utilize the processor
efficiently) at the cost of increased
processor overhead per call.

At all levels, messages have common
characteristics. Messages can be any
length, from zero bytes to the 1limit
of physical memory. Message
destination is determined by node
number and process id. Each message
has a type which can be used for
identification or to enforce message
order.

The typesel parameter in receive and
probe calls selects messages by type.
There are three cases, When the
typesel parameter is positive, it
explicitly selects that unique type.
When typesel is -1, all types are
selected. Otherwise, when the sign
bit is set in typesel/, the other bits
form a mask which allows selection of
any set of types in the range 0-30.

4.1 Message Passing Models

These characteristics are designed to
effectively support program-directed
message passing. In this model,
message traffic is strictly
determined by the sequential
execution of program code by using
send and receive calls within each
node process. NX/2 provides message
ordering, typing, flow control, and
buffering so that each process,
running at its own rate, can receive
messages in their expected order. At
the same time, it minimizes the
possibility of deadlock so that no
special attention is required on the
part of the application programmer,
Experience indicates that this model
of programming is easy to learn and
use, both for original code and for
porting existing sequential
applications to concurrent execution.
It is an especially good match for
data domain decomposition techniques.

The generality of the message passing
system calls is sufficient to support
other message passing models with
reasonable efficiency. Applications
can be built from clusters of
identical or unique processes, with
separate address spaces using the
built-in process control or as light
weight shared address space processes
constructed within a single NX/2
process, These processes can
communicate via RPC mechanisms or can
use an object oriented, message-
driven approach. In many cases it
will be necessary to write additional
support code at the application level
to implement these models, but in all
cases the NX/2 message passing calls
should provide a convenient base.

4.2 Simple Blocking Calls

The core message passing calls are
sufficient to write a complete
concurrent application. They send,
receive, or wait for a message to
arrive, and return when the operation
is complete.

RN

csend (type, buf, length, node, pid)
crecv (typesel, buf, length)
cprobe (typesel)

Simple Message Passing Calls

The c¢send() call assigns a type and
destination to a message, then sends
it. The call does not return until
the message has entered the
communications network and the send
buffer is no longer needed. Note
that the «csend() call does not
necessarily wait for the message to
be received at its destination.

The crecv() call selects an incoming
message by type and receives it into
a buffer, It does not return until
the message arrives in the buffer.

388

The cprobe() call can be used to wait
for a selected message or one of a
set of messages to arrive at the
node. When cprobe() returns, crecv() can
be used to direct the message into a
buffer.

There are four info calls which
return information about the most
recent message received or probed
for. They might be used after cprobe()
to determine the correct buffer to
use 1in the subsequent crecv() call.

infotype ()
infonode ()
infopid ()
infocount ()

Message Information Calls

There are also several calls which
allow a process to identify itself
and determine its position in the
system environment.

mynode ()
mypid ()
numnodes ()

General Information Calls
4.3 Asynchronous Calls

Simultaneous message passing and
computation are possible by wusing
calls which return as soon as the
operation is initiated.

mid =
isend (type, buf, length, node, pid)
mid =irecv (typesel, buf, length)

Asynchronous Message Passing Calls

The isend() call initiates transmission
of a message and immediately returns
a message id. The message id must be
used to determine when the message

enters the communication network and
the message buffer is no longer
needed, Again, this does not allow
the sender to determine when the
message is actually received.

The irecv() call posts a request to
receive a message into the buffer.
It also immediately returns a message
id which must be used to determine
when the message arrives. The irecv()
call is particularly useful for
setting up the receive buffer for an
incoming message before the message
is required in the application. This
is efficient for two reasons. First,
when the message arrives the system
will take 1less overhead in
determining what to do with it, since
it can be received directly into the
receive buffer, Second, the
application can do useful computation
while the message is arriving.

msgwait
flag = msgdone (mid)
flag = iprobe (typesel)

~Status Calls

The msgwait() and msgdone() calls must
be used to determine when an
asynchronous send or receive
operation completes. They both take
the message id of the operation as a
parameter. Msgwait() does not return
until the operation completes, while
msgdone() immediately returns a
boolean which is true if the
operation is complete. After either
of these operations indicate that a
receive operation is complete, the
info() calls from the basic subset can
be used to obtain information about
the message.

The iprobe() call provides a means of
determining whether a message 1is
ready to be received. Unlike the
cprobe() call, the iprobe() call does not

389

wait for the message but immediately
returns a boolean which is true if
the message has arrived. In that
case, the info calls can be used to
find out about the message.,

4.4 Interrupt-driven message passing

When more independence is needed
between message passing and
processing, message reception can be

interrupt-driven.

hrecv (typesel, buf, length, handler)

Interrupt Driven Receive Call

The hrecv() call posts a request to
receive a message into the buffer and
returns immediately. It also sets up
a handler procedure which will be
called when the receive operation is

complete. The handler is called Wwith
parameters containing information
about the message, so that the info

calls are not needed.

It is possible to post several hrecy()

requests Simultaneously, with
Separate handlers or with a common
handler. In addition, receive
completion interrupts ecan be
temporarily blocked to protect

eritical sections.
5. Future Direction

As the machine evolves, the operating
system will necessarily evolve with

390

it. The next major enhancement to
NX/2 will support new 1I1/0 hardware
which connects disk, tape, and other
I/0 devices directly to the cube.

We are also investigating several of
the new programming models, such as
SVM (shared virtual memory) and
various object oriented approaches,
SVM and some object oriented models
rely on RPC (remote procedure call)
mechanisms, while other models rely
on very simple, high speed, 1low
overhead message passing.

We would like to add support for SVM
into the NX/2 kernel, making it an
extension of the existing process
model. However, for some of the new
message passing models the inherent
overhead of the flexible message
passing model supported by NX/2 is
too high, and a different approach is
required. For these models, NX/2 can
provide a convenient environment for
initializing the hardware and loading
the new system code, then step out of
the way and provide direct access to
the message passing hardware. We are
looking at ways of allowing 1low
overhead message passing to co-exist
with the current model, so that we
can continue to use existing tools
(such as the debugger) and so that
applications written to different
programming models can interact.

We are also looking into
possibilities for additional support
of the existing programming model,
such as higher level message passing
functions that allow global
arithmetic and logical operations to
perform at kernel speeds.

*Unixis a trademark of ATT&T Bell Laboratories.

The Intel iPSC/2° System:

The Concurrent Supercomputer
for Production Applications

SUMMARY

The iPSC®/2 concurrent supercomputer
delivers a new standard of price
performance for scientific and engi-
neering computation: 10 times that
of a supercomputer and 100 times
that of a supermini. oOn actual
application codes the iPSC/2 system
has demonstrated true supercomputer
performance (over 100 MFLOPS).

The iPSC/2 system, which began ship-
ping in December 1987, is a powerful
applications engine that can off-
load the compute-intensive portions
of large scientific and engineering
applications.

At the same time, the iPSC/2 system
offers an interactive, multi-user
environment via the Sun*-3 worksta-
tion. Users retain their familiar
applications interfaces but reap the
benefits of Supercomputer power:
large problems solved, with higher-
quality results, in dramatically
less time.

ipPsSc/2 SYSTEM OVERVIEW
System: The iPSC/2 system (see fig-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© ACM 1988 0-89791-278-0/88/0007/0843 $1.50

Figure 1. The Intel IPSC%2 system

ure 1) is a highly parallel, scal-
able computer system. The system’s
multiple processing elements, or
nodes, are complete, self-contained
computers with substantial execution
speed and local memory capacity (see
table 1). Nodes vary in processing
power and memory capacity.

The Network: A high-performance
network, optimized for message-
oriented communication, intercon-
nects the nodes. The iPSC/2 Direct-
Connect™ communication network pro-
vides a high-speed data pathway
between the nodes of the system, and
between any node inside the system
and the System Resource Manager.

Nodes: The nodes of the iPSC/2 sys-
tem offer exceptional flexibility

843

for the system designer or applica-
tion programmer. The basic iPsc/2
node features a 32-bit Intel 80386
microprocessor and 80387 floating
point co-processor, one to sixteen
megabytes of memory, and a Direct-
Connect network interface. Two
options (the iP$C-SX and iPSC-VX)
are available to accelerate numeric
performance at each node.

Development Environment: The UNIX-
based software development environ-
ment for the iPSC/2 system supports
a multi-person programming team in a
familiar workstation setting, while
providing a set of state-of-the-art
tools for developing and debugging
concurrent applications. Known as
the Concurrent Workbench™ software,
the software includes: C, Fortran,
and Common LISP languages; the VAST-
2 vectorizer; linker:; libraries;
utilities; and DECON, the iPSC/2
system’s concurrent debugger.

ipsc/2 APPLICATIONS
The iPSC/2 system is a highly cost-
effective solution for scientific

and engineering applications that
demand large scale performance.
Among the applications running or
being developed for the iPSC/2 sys~
tem:

Computational Mechanics: Advanced
modeling techniques for engineers,
such as non-linear structural analy-
sis, 3-dimensional fluid dynamics,
and aerodynamics, have taxed the
capabilities of conventional super-
computers. These computationally-
demanding techniques are perfectly
suited to the iPSC/2 system’s combi-
nation of concurrent and vector
computing.

Intel is working with partners in
the field of computational mechanics
to build a full set of complementary
software applications for the me-
chanical engineer. fThese include:

* NEKTON*, from Nektonics Incorpo-
rated, is a state of the art pack-
age for fluid dynamics and heat

transfer analysis. NEKTON solves
the full incompressible, unsteady

Table 1: IPSC®2 system specifications

AGGREGATE PERFORMANCE (PEAK)
MFLOPS—32-bit Precision iPSGC/2 basic system

MFLOPS—64-bit Precision iPSC/2 basic system

MIPS All systoems

iPSC/2 SX scalar option
iPSC/2 VX vector option

iPSC/2 SX scalar option
iPSC/2 VX vector option

CUBE DIMENSION d3 da d5 d6 d7
Number of Nodes 8 16 32 64 128
AGGREGATE MEMORY
Basic and iPSC-SX systems 1 MByte/node - 16 32 64 128
' 4 MByte/node - 64 128 256 512
8 MByte/node —_ 128 256 512 1024
16 MByte/node — 256 512 1024 —
iPSC-VX system 1 MByte/node—1MByts VX 16 32 64 128 —_
4 MByte/node—1MByte VX 40 80 160 320 —
8 MByte/node—1MByte VX 72 144 288 576 -

4.0 8.0 16.0 32.0
- 18.0 35.0 70.0 141.0
160.0 320.0 640.0 1280.0 —

3.4 6.7 13.0 27.0
—-— 10.0 20.0 40.0 81.0
5§3.0 106.0 2120 4240 —

32 64 128 256 512

844

100+ NEKTON performance 100

éa 751 70 /
ol
Ed

&< 5071 //////

25.' /

os %

G %

VAX 8700 Cray X-MP-14 iPsc®2 vx/ds
Figure 2—NEKTON performance.

NEKTON Price-performance
($ K/MFLOPS)

0004 $875
Yo7

25+
$7.0
0 - o o .
VAX 8700 Cray X-MP iPSCR-VX

Figure 3—Comparative price- performance (based
on NEKTON resulits)

Navier Stokes and enerqgy equations
and is applicable to a wide range
of problems in the aerospace, auto-
motive, biomedical, electronics,
and process industries. Simula-
tions running on NEKTON on the
iPSC/2 system have achieved super-
computer performance (see figure
2), and a 10-fold improvement in
price-performance over conventional
Supercomputers.

* PASSAGE* from Technalysis incor-
porated is a powerful software
package for the analysis of inter—
nal fluid flows. PASSAGE is based
on an advanced block-structured
finite element technique and is
being used in automotive and aero-
Space applications. Early bench~
marks suggest that PASSAGE perform-
ance, delivered on a 32-node iPSC-
SX system, will exceed the capabil-
ity of a Cray x-Mp Supercomputer.

* Additional software development
is underway in the area of modeling
the aerodynamics of high-perform-
ance airframe design.

Discrete event simulation: Using
simulation tools on the iPsSC/2 sys-
tem, programmers can focus on the
task of building very large discrete
event simulation models, instead of

the details of the system architec-
ture.

* Interwork II*, from Block Island
Technologies, provides several use-
ful tools for developing concurrent
programs spanning a variety of ap-
plications. It offers an extensive
set of tools to assist in applica-
tion development, and its object

orientation promotes the construc-
tion of modular, reliable programs.

Petroleum Exploration and Produc-
tion: The iPSC/2 system’s combina-
tion of vector and concurrent com-
puting provides performance beyond
typical supercomputers—for seismic
modeling and oil reservoir simula-
tion.

* A state-of-the art seismic proc-
essing application is being devel-
oped by a software company for the
iPSC-SX system. Employing a
“model~based” seismic processing
technique, the application takes
raw seismic data and employs a so-
phisticated ray tracing method to
drive a self-correcting model of
sub-surface geology.

Molecular mechanics and structure

optimization: Molecular modeling
predicts the structure and behavior

845

of complex chemical formulations by
simulating the chemistry and physics
of the constituent atoms. Applica-
tions development is progressing on
techniques ranging from ab initio
quantum mechanical techniques to
molecular mechanics and dynamics.

*HYPERNEWTON, from Hypercube Incor-
porated, is a general purpose pack-
age for molecular mechanics and
dynamics calculations. When devel-
opment is completed, it can be used
for the structural determination of
organic molecules and is suitable
for protein and nucleic acid engi-
neering applications.

*Additional software under develop-
ment will predict the 3-dimensional
Structure of macromolecules. It is
based on a proprietary energy mini-
mization technique and is targeted
for the iPSC/2 VX architecture.

Electronic Design: Continuing in-
Creases in complexity and the compe-
tition for faster time to market are
driving electronic designers to
total computer simulation of sys-
tems, chips, and processes. Intel
Corporation is targeting the iPSC
family for VLSI design applications
including process, device, and cir-
cuit simulation.

iPSC/2 REFERENCES

The following papers on the iPSC/2
system appear in the Proceedings of
the 3rd Conference on Hypercube
Concurrent Computers and Applica-
tions:

Arlauskas, Ramune. “iPSC/2 System: A
Second Generation Hypercube.”

Arshi, Shala; Asbury, Ray; Bran-
denburg, Joe; and Scott, David .“Ap-
plication Performance Improvement on
the iPSC/2 Computer.”

Bain, William L., and Arshi, Shala.
“Hypersim: Hypercube Simulator for
Parallel System Performance Model-
ing . ”

Close, Paul. “The iPSC/2 Node Archi-
tecture.”

Ertel, Dave. “Environment for En-
hancing iPSC/2 Programmer Productiv-
ity.”

Nugent, Steven F. “iP8C/2 Direct-
Connect Technology.”

Pan, Wei Min, and Jackson, Victor.
“"A Concurrent Debugger for iPSC/2
Programmers.,”

Pierce, Paul. “The NX/2 Operating
System.”

FOR MORE INFORMATION

To learn more about the iPSC/2 sys-
tem and applications, or about con-
current computing training classes
and seminars, contact:

Intel Scientific Computers
15201 N.W. Greenbrier Parkway
Beaverton, OR 97006

(503) 629-7629

Interwork is a trademark of Block
Island Technologies. Sun is trade-
mark of Sun Microsystems. NEKTON
is a trademark of Nektonics, Inc.
Passage is a trademark of Technaly-
sis, Inc. Cray is a trademark of
Cray Research.

846

