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Abstract

The production of realistic image generated by computer requires a huge amount
of computation and a large memory capacity. The use of highly parallel machines
allows this process to be performed faster. Distributed memory parallel computers
(DMPCs), such as hypercubes or transputer-based machines, offer an interesting per-
formance/cost ratio when assuming that a load balancing and a partition of the data
" domain have been performed. This paper presents a software running on an iPSC/2
whose name is VM_pRAY. The aim of this experimental software is to show that using
a virtual shared memory is an efficient strategy for parallelizing algorithms which, like
ray tracing, usc large read-only databases with no obvious data domain decomposition.

The source code of VM_pRAY for an hypercube iPSC/2 is given in the appendix.

Un algorithme de lancer de rayon performant pour une
machine a mémoire distribuée

Résumé

La production d’images de synthése réalistes nécessite de nombreux calculs ainsi
que 1’utilisation de bases de données de taille trés importantes. L’utilisation de ma-
chines massivement paralléles permet de réduire de fagon significative les temps de
traitement. Les machines paralléles & mémoire distribuée, telles que les hypercubes ou
les machines & base de transpulers, offrent un rapport performance/coit intéressant
dés lors qu’une répartition équilibrée des calculs et des données est obtenue. Cet article
présente un logiciel appelé VM_pRAY. Le but de ce logiciel expérimental est de mon-
trer que I’émulation d’une mémoire partagée virtuelle est une stratégie efficace pour la
parallélisation d’algorithmes, tel que le lancer de rayon, qui utilisent de grandes bascs
de données en lecture ¢t dont le domaine est difficilement décomposable a priori. Les
sources de VM_pRAY, pour un hypercube iPSC/2, sont fournis en annexe.
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Figure 1 : The ray tracing principle.

1 Introduction

The ray tracing algorithm is used in computer graphics for rendering high quality image
synthesis. It is based on simple optics’ laws taking into account the effects such as shading,
reflection and refraction. This graphic algorithm also is well known for its processing
ressources requirement. Despite numerous improvements, the ray tracing algorithm is still
too slow on sequential computers. Therefore, low cost high parallel powerful computers,
such as distributed memory parallel computers (DMPCs) seem to be an opportunity for
speeding up this algorithm. This paper presents VM_pRAY, a parallel ray tracing algorithm
capable to render scenes of more than one million polygons on an hypercube iPSC/2.
Section 2 presents the basic procedures used in our algorithm, while section 3 describes
the use of a virtual shared memory for parallelizing this algorithm. Results are given in
section 3.6 to show the performances of VM_pRAY.

2 Computation involved in the ray tracing algorithm

The ray tracing algorithm simulates the operation of a camera, following light rays in
reverse order. The basic operation consists in tracing a ray from an origin point towards a
direction in order to evaluate a light contribution. The closest intersection (tmpact point)
between the ray and the scene determines the object, if one exists, which contributes to
this evaluation. As shown in Figure 1, the computation of each pixel of a simulated screen
plane consists in shooting a ray from an observer through this pixel (primary rays). When
an impact point is found, light sources’ contributions to a pixel intensity are computed by
shooting rays (light rays) from this point to each light source to determine if the relevant
point is shadowed. According to the photometric properties of the intersected objects, new
rays are shot from the impact point, in order to take into account the contribution of the
neighboring objects [5, 8, 15]. If the object is transparent (respectively reflective) a ray is
shot in the refracted (respectively reflected) direction (secondary rays).



Geometric computations are used to find the closest intersection point between a ray
and the objects in the scene. Their number increases with the photometric complexity of
the scene (i.e. with the number of rays) and with the geometric complexity of the scene
(i.e. with the number and the shape of the objects). Computing realistic images requires
several millions of rays and several hundreds of thousands objects. It is this large number
of ray/object intersections which makes the ray tracing a very expensive method. Several
attempts have been proposed to minimize the amount of ray/object intersection. These
solutions are based on what we call an object access structure which allows a fast search
for objects along a ray path.

This section presents the basic algorithms of VM_pRAY dealing with geometric com-
putations. VM_pRAY uses polygonal objects, and both a regular grid [1, 6] as an object
access structure and an object extent called slabs [9].

For the basic algorithms, we use the following representation :

o The parametric representation of a ray is :
r(t) =0+ Dt (1)

where, O is the origin of the ray, D the direction of the ray, and t the parameter of
the representation.

e A polygon is described by its vertices V; (i € {0,---,n—1},n > 3). Let i,y and 2
the coordinates of the vertex V;. Assuming that VoV, and VoV, are not colinear, the
normal vector N of the plane containing the polygon is given by :

N=VoVi x VoVs

For each point P of the plane the quantity P.N is constant. This constant value is
computed by the dot product d = —Vp.N. The implicit representation of the plane,

NP+d=0 (2)

is computed once for all, and stored in the polygon data structure.

2.1 Regular 3D grid

The rectangular scene extent is subdivided into a 3D grid whose elements are voxels. With
each is associated a list of polygons intersecting it. For each ray, the grid provides a list
of polygons whose location is close to the ray direction. To avoid repeated intersections
between a polygon shared by severals voxels and a given ray, an identifier (id,q,) is stored
in the polygon data structure and represents the last ray checked for an intersection with
this polygon.

The grid traversal method is the one described in [1]. Beforehand, the first voxel en-
countered by the ray is determined. This voxel is either the voxel containing the origin of
the ray (O) or the entry voxel when the ray comes from outside the grid. For each ray
traversing the grid, the following values are initialized :




]

Figure 2 : Traveling a 3D grid.
e the constants §t,, 61, and 6t, represent the increment of ¢ in each direction X, Y,
Z.

e the variables ., t, and t, represent the values of t corresponding to the next voxel
boundary in the X, Y or Z direction (see Figure 2).

An incremental step through the grid is done using :

if t;<tyandt, <t,

then Te—zx+1;
ty — o + 0t
else if ¢, <t,
then y — y+1;
ty — t, + 8ty;
else 22— 2z+4+1;
t, — t, + 6t,;
2.2 Slabs

Before computing the ray/polygon intersection, a test is made using the slabs (cf [9]).
The slabs are convex extents delimited by pairs of parallel planes (see in figure 3 a 2D
example). One slab is characterized by a normal direction N; and two values d™" and
d**%, so that the equation of the planes enclosing a polygon in the direction N; are :

N;-P+df"i"=0 and N;-P + d™** = 0 (3)

d7™" and d*°* are evaluated by projecting each vertex V; according to direction N; :

dij = N;-V; d™™ = min(d;;) dP** = max(d;;)
J J

The values d™" and d** are stored in the polygon data structure. During the syn-
thesis task, the ray/slab intersection results in an interval [t7n tma%], These values are
computed using the ray representation (Equ. 1) and the slabs representation (Equ. 3):

gmin _ 4" — Ni.O ymaz _ 40°*" = Ni.O
t N;.D § N;.D

For each ray, the following values are pre-computed :
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Figure 3 : Description and intersection of the slabs extent.

S;=N;-O0 and Ti:T;lﬁ
Therefore, a ray/slab intersection only requires the following computations :
trin = (dPn — S)T;  and %0 = (dP"** - S)T;
Furthermore, as soon as ﬂ,-[t}"i", %] is empty, the ray does not intersect the ob ject since
it does not intersect its extent.
2.3 Ray/polygon intersection

The following ray/polygon algorithm is quite similar but faster to the one described in
[14]. This algorithm consists of two steps :

e find the intersection point P between the ray and the polygon plane.
e test if P lies inside the polygon.
The parameter t corresponding to the ray/plane intersection point can be obtained by
using equations (1) and (2) : '
d+ N.O
t=s ————
N.D )
Three tests are made for this ¢ value :

e If polygon and ray are parallel (N.D = 0), the intersection is rejected.

e If the intersection is behind the origin of the ray (¢ < 0), the intersection is rejected.
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Figure 4 : Parametric representation of the point P.

e If a closer intersection has been already found for the ray (¢ > tray), the intersection
is rejected.

Then, we must determine if the intersection point is inside the polygon. This algorithm is
applied to triangles but can be easily extended to convex polygon. To efficiently compute
a ray/triangle intersection, the triangle is parametrized by two values o and f. Indeed,
the point P within the triangle plane verifies :

VoP= a. VW3 +8. VoV, (5)
The point P is inside the triangle (VoW1 V) if :
a>0,8>0and a+p3<1

The computation of @, § requires to solve a system of three equations of two unknowns
which can be reduced to a system of two equations of two unknowns when working in a
plane, with two-dimensional coordinates. We wish to project the polygon onto one of the
primary planes, either XY, XZ, or YZ. If the polygon is exactly perpendicular to one of
these planes, its projection onto that plane will be a single line. To avoid this problem,
and to make sure that the projection is as large as possible, we find the dominant axis of
the normal vector and use the plane perpendicular to that axis. As in [14], we compute
the value 4,

L if |Ny| = Maz(|N, [Ny, V..
2 if INzl = M‘”’(lNzlx INyL INzl)

Let us onsider é; and i2 (11 and 3 € {0,1,2}), the indices (different from 4() representing

. { 0 if |Nz| = Maz(|Nz|,|Nyl,|N;)).
I =

the two other components, and (u, v) the two-dimensional coordinates of the vectors Vo P,
VoV1 and WV, ¢

Ug = -Pil - VO.'I Uy = 1/1.'1 - ‘/0.'l Uz = V2,'1 - ‘/0.'1
Vo = -Piz - ‘/0.'2 N = ‘/1,‘2 - ‘/0.'2 Uy = V2g2 - ‘/O,'2
6



Then, the solutions of the system are :

det ( Zo 1’;2 ) det ( :1 ZO )
o V2 1 Yo
a= and (=
det ( ¥ ) det ( th U2 )
N v v V2

The parameters o and 3 can be used to compute the interpolated normal vector at the ‘
point P, and can be also used to compute the entry of a texture map. The interpolated
normal vector Np at the point P may be obtained by :

Np = (1 - (a + ﬂ))No 4+ a.Ny+ B.N,

2.4 Partitioning the ray tracing algorithm

Using polygons and 3D grid, the geometrical data structures involved in VM_pRAY rapidly
reaches several tens millions of bytes (Mbytes). In our results, we present a database which
requires 140 Mbytes of memory. This problem of memory amount becomes even more
crucial when using texture databases. Thus, our study of parallelization did not hold the
algorithms based on processing without dataflow as they do not achieve a data distribution
which allow the rendering of complex scenes.

Since DMPCs are not fine grain parallel computers, the basic computation involved
in VM_pRAY is the evaluation of one pixel. The computation can be easily distributed
among the processors, as the evaluation of each pixel is independent of the others. Since
there are much more pixels than processors, load balancing can be achieve by using a
server/client programming model. A server process assigns the computation of a pixel to
a client process running on a non-busy processor.

The problem of parallelizing an algorithm is to efficiently insure, at once, a data do-
main decomposition and a computation partition. We have yet experimented a parallel ray
tracing algorithm [11, 12] based on processing with ray dataflow. This algorithm took up
the Cleary’s idea [4] and subdivides the scene extent into sub-regions distributed among
the differents processor elements (PEs). Rays are exchanged between PEs when they move
from region to region. This experience has provided several interesting solutions for in-
suring a static load balancing, but the efficiency of this algorithm rapidly decreases when
the number of PEs increases. The reason of this behavior is due to the message traffic
increase.

Our first experience shows that to insure both a load balancing and a data domain
decomposition for the ray tracing algorithm is not efficient when using a message based
programming model. The next section presents another approach which uses a shared
memory programming model to achieve a data domain decomposition. The message based
programming model is just used for distributing the calculus.
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Figure 5 : Several uses of the memory cache mechanism.

3 Emulating a read-only shared memory for ray tracing

3.1 A shared memory model of programming for DMPCs

To overcome the difficulties of the message passing programming model, several studies
have tried to define mechanisms for implementing a shared data model in distributed
systems [2, 3, 10]. The goal of this work is to provide a better abstraction of mapping data
on a set of distributed memories. In [2] and [10], strategies for maintaining data consistency
between copies of modified variables are studied in order to offer a general tool. The data
management following this abstraction is quite attractive but our first objective is always
the efficiency of data accesses. The aim here is to show that the emulation of a shared
memory on a DMPC is the best way to parallelize algorithms such as ray tracing which use
large read-only databases with no obvious data domain decomposition. With a DMPC, a
part of each node’s memory can be used to store a part of the shared database and the
remaining part is used as a cache to speed up slow global accesses. The notion of cache,
managed by software in our case, is the core of an efficient shared memory emulation.

Caches were introduced to palliate the gap between fast processor cycle times and
slow large memory access times. Generally speaking, a memory cache is any hardware
or software device storing in a relatively small but fast access area a selected part of a
database stored in a larger but slower access memory (see Figure 5). A general presentation
of cache memories can be found in [13]. The use of a cache device improves the bandwidth
between the processor and its memory. In our case, it increases the bandwidth between a
node and the distributed global memory, called virtual shared memory.

3.2 A model well suited for ray tracing

Various characteristics of the ray tracing algorithm led us to design a software tool to
emulate an access to a global memory in the context of DMPCs. These characteristics are
as follows:

e the huge amount of memory necessary for this algorithm makes the database load

balancing as important as the computation load balancing. Increasing size problems
are a challenge for DMPCs ;

e due to the coherence property and topological property of 3D ob jects, only a small
part of the whole database is required at a given time. Thus a caching mechanism
can be efficient for our problem ;
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Figure 6 : A user node memory description.

e due to illumination effects (shading, reflection, refraction), the small part of database
necessary to evaluate one pixel is nearly impossible to determine statically. Thus the
database memory management must be dynamic ;

e the computation of an image uses the database in a read-only way, therefore the
problem of data coherence management is not posed.

3.3 Implementing a virtual shared memory

In the ray tracing algorithm, the virtual shared memory contains the database and the
frame buffer. The sharing of pixels will be discussed in the next section. The database con-
tains the photometric and geometric parameters of the objects of the scene, together with
the object access structure. The mechanism used to manage the virtual shared memory
is called Object Paging where an object (a polygon, a voxel of the grid ... etc) is an item
of a page which can be transferred between local memories. An object belongs to one and
only one page, and thus its memory location is contiguous.

In our algorithm, the whole database is first equally distributed over the set of nodes
without any particular strategy. Therefore each PE’s memory almost contains the same
number of pages. A local memory of a PE is organized as shown in figure 6. Each local
memory is divided in three parts: the process code, a part of the database, and the cache
memory. The two last parts are divided into pages to allow memory management.

3.4 Accessing an object in the virtual shared memory

During the synthesis task, the application can potentially access the whole database
through a software memory management. For each node, when a cache miss is detected,
i.e. the page is neither in its local database nor in the cache memory, then a request is
sent to the node responsible for this page. When the node receive the page, it stores it in
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Figure 7 : Accessing a global object.

its cache memory according to a LRU (Last Recently Used) policy. This search is done
during the communication of the new page, and thus causes no extra cost (see Figure 7).

In VM_pRAY, an object of the global database is characterized by two numbers : id;
is the identifier of the class which the object belongs to, and id; is the member identifier
within this class. The numbers (id;,id;) represent one unique location in the global mem-
ory. A class is a set of objects having the same type. All the ob jects of one class are stored
in contiguous pages to make the global memory management easier. The informations
relative to one class are :

o firstpage(id), the first page where the objects of class id are located.

® Sizegpject(id), the size of an object of class id.

® Nbobject_per_page(id), the number of objects of class id in one page.
Thus, in order to access a global object, we must determiné :

e the page where the object is located :
numpage = fiTStpage(idl) + zd2 / nbobject_per_page(idl)
¢ the node where the page is located :

RUMpode = NUMpgge % Nbnode

10



o the page with respect to this n.ode ?
deprode = NUMpage [ Nnode
e the object with respect to this page ?
deppage = id2 % Nbobject per_page(id1)

After getting the page from an other node if necessary, the address of the object is
evaluated as follows :

Qobject = @page + deppage X Siz€object(id1)

For better performances, we have chosen the values as power of two. Thus, all the
operations necessary to calculate the address of an object only require logical operations.

3.5 Work and bitmap distribution

With a shared database, to ensure a load balancing is quite simple. Each PE is owner
of a part of the bitmap. For example, if we use 32 PEs to compute an image with a
512 x 512 resolution, each PE manages a 32 X 32 sub-bitmap. We use a square (or nearly
square) sub-bitmap in order to exploit as much as possible the ray coherence property.
If the PEs could directly addressing the frame buffer, a centralized control would not be
necessary. As we do not have this facility on the iPSC/2, the host computer insures a
global management of the different sub-bitmaps in order to fill in the frame buffer. The
synthesis of each sub-bitmap requires frequent global data accesses at the beginning of the
task, and the number of external requests progressively decreases as the memory cache
keeps the pertinent items of the global database.

When a PE completes the computation of its sub-bitmap, it sends a request to get a
work item (i.e a set of pixels) from a PE still working on its own sub-bitmap. This request
moves along a ring topology. If this request goes back without satisfaction, the PE knows
that the image computation is achieved. This local termination detection is sufficient for
our application.

In order to insure a load balancing, the only parameter to be determined is the size of
this work item. If its size is minimal (i.e. work item = one pixel), then we have the best
load balancing we can obtain, assuming that the computation of one pixel is indivisible
over the set of nodes, but the communication cost is then high. We must not generate
more work in communication activity than in computation to insure the load balancing .
Experimental results (see Figure 8) show that a size of about 3 x 3 pixels offers a good
compromise. '

3.6 Results

Tests of our parallel ray tracing has been performed on a set of scenes call Standard
Procedural Databases (SPD) provide by Eric Haines [7] and other scenes including the

11
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Figure 8 : Relative efficiency using different size for a work item.

famous Teapot from the university of Utah. These files are described with the Neutral File
Format (NFF) of Eric Haines. Several synthesis times are given by the table in figure 11.

Figures 9 and 10 show the speedup and the efficiency obtained with this algorithm. If
we compare the results obtained by this method with our previous work [11, 12], we can
emphasize on the improvements brought by the shared database model of programming.
The behavior of this algorithm is what a user of parallel machines expects : the use of
more PEs allows to solve problems faster, and to consider larger problems. This is due to
the characteristics of the software global memory management ;

o for a sufficient size of memory cache, the PEs can work efficiently since the number
of requests to others is small ;

o the size of the memory cache is flexible. Indeed, with a memory fixed-sized problem,
i.e. a fixed-size database, using more PEs increases the computation power of course,
but also provides a better memory management as the local cache memory increases
(see Figure 6).

One of our goals is to compute as large a database is possible. At present, we have
rendered the tetra10 database which contains more than one million (1048 576) polygons.
The size of this scene with its object access structure requires the use of 109 452 pages (x
1280 Bytes), which represents a shared memory of about 140 MBytes. The synthesis time
with 64 nodes is 8 mn 46 sec. Note that this database cannot be rendered with 32 nodes
(with 4 MBytes of memory per node).

4 Conclusion
The aim of our study to parallelize the ray tracing method is to bring out a model of parallel

programming well suited for this kind of algorithm. Due to the difficulty to appreciate
the performance of the various parallel ray tracing algorithms, we have done and keep on

12
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Figure 9 : Speedup for the Rings images.

[#Proc.:[ 1 [ 2 [ 4 ] 8 [16] 32 | 64 |
Rings2 1.00 [ 0.95[0.93]0.91]0.91]0.90 | 0.89
Rings3 1.00 | 0.95 | 0.92 | 0.91 | 0.90 | 0.89 | 0.88
Rings4 1.00 | 0.95 | 0.93 | 0.92 | 0.91 | 0.90 | 0.88

Figure 10 : Efficiency for the Rings images.

Database | # Polygons | Synthesis Time
Teapot 3754 1 mn 59 sec
Coupe . 15408 5 mn 44 sec
Rings4 18002 8 mn 48 sec
Tetra9 262144 2 mn 21 sec
Tetral0 1048576 8 mn 46 sec

Figure 11 : Examples of synthesis times with 64 nodes and a resolution of 512 x 512 pixels.
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doing experiences on an iPSC/2 hypercube. Comparing the behavior of our first algorithm
[11, 12] using a message passing model of programming with the behavior of the one
described in this paper, which uses a shared database model of programming, we advocate
the shared model approach when using large read-only database with no obvious data
domain decomposition.
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A The iPSC/2 hypercube

For the VM_pRAY design, we have used an iPSC/2. The iPSC/2 system consists of a
cube connected to a host processor. The cube houses all the nodes connected through a
hypercube network topology. Each node consists of an Intel 80386 microprocessor supplied
with a 80387 floating point co-processor, and 4 Mbytes of local memory. It is equipped
with the Direct Connect Module (DCM) for high speed message routing between nodes.
The performance of a 64 nodes is approximatively 256 MIPS and 20 MFLOPS. The node
supports a vector extension board with peak performance 20 MFLOPS per node. The
system available at IRISA is configured in 64 nodes with no vector extension. The host
processor contains the software development tools. It is connected via a special link to node
cube 0. It performs compiling, program loading and I/O operation with the hypercube.
The iPSC/2 can be programmed using C or FORTRAN. A communication library handles
message communication between nodes.

B A brief introduction to the C Communication library

B.1 crecv

crecv(type,buf,len)

Receive a message (blocking mode)

B.2 ginv

Jj = ginv(i)

Returns the position of an element in the binary-reflected Gray code sequence.
B.3 gray

i = gray(j)

Returns the binary-reflected Gray code for an integer.

B.4 hrecv

hrecv(typesel,buf,len, proc)

post a request to receive a message into a buffer, and when receipt of the message is
complete, immediately execute a receive trap handler procedure. The name of the handler
is the proc parameter.

B.5 infocount

msglen = in focount()
Get length of the last message.

16



B.6 isend

id = isend(type, buf,len, node, pid)

Send a message (no blocking mode)

B.7 irecv

id = irecv(type, buf,len)

Receive a message (no blocking mode)

B.8 led

led(1) switch on the user led.

led(0) switch off the user led.

B.9 masktrap

newstate = masktrap(oldstate)

Enable or disable a receive trap. Used for critical processing.

B.10 msgdone

msgdone(id) _

Determine whether an isend or irecv operation is complete. (no blocking mode)
B.11 myhost

myhost = myhost()

Obtain the ID of the host machine.

B.12 mynode

mynode = mynode() '

The node ID (0 to 127) of the process that initiated the routine is returned.
B.13 nodedim

dim = nodedim()

Delivers an integer from 0 to 7 representing the dimension of the cube.
B.14 numnodes

num = numnodes()
Delivers an integer from 1 to 128 representing the number of nodes in a cube.
numnodes() == 2nededim()
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C Source files

This appendix contains a man page and the source code for VM_pRAY. The list of the
source files are presented as follows :

e Makefile for the host code.
e host_main.c

e host_comm.c
e host_data.c

e host_out.c

e host_page.c

e host_seads.c

e host_extern.h
o Makefile for the node code.
e node_main.c
¢ node_data.c

¢ node_comm.c
e node_page.c

¢ node_param.c
¢ node_photo.c
e node_pixel.c
¢ node_plane.c
e node_pol.c

¢ node_seads.c
¢ node_slabs.c
¢ node_extern.h
e host nff.y

e ray._vec.h

e ray_page.h

e ray_comm.h

e ray_type.h

18




VM _pRAY (1) USER COMMANDS VM _pRAY (1)

NAME
VM_pRAY (Virtual Memory parallel RAYtracer)

a parallel ray tracing using polygonal databases.
SYNOPSIS

pray [ —i inputfile ] [ o outputfile ] [ x 1 [ =v ][ -r res ][ =k coeff ][ -? ]
DESCRIPTION

pray is the version of VM_pRAY running on an iPSC/2.

This program reads Eric Haines’ NFF file format files as input. Only polygonal objects (list of triangles)
are taken into account. In order to load the database during the reading of the input file, we have added
some informations in the NFF format. These informations are :

The number of polygones in the scene.

"n" (or "number") nb

The scene extent.

"g" (or "grid") xmin xmax ymin ymax zmin zmax

The viewing format is now:
v
Jrom %g %g %g
at %g %g %g
up %og %og %g
angle %g
hither %g
resolution %d %d
number %d

and the scene extent:
grid %g %g %g %g %g %g

OPTIONS

—i file.nff
to specify a database input file. If no input file is specified, the program reads from standard
input. '

—o file.rvb
to specify an output file for the bitmap (24 bits depth). If no output file is specified, the bitmap
is not saved.

-X to open an X window for displaying a grey bitmap (8 bits depth) in real time during synthesis.
The user must specify an X color screen (8 bits depth) with the environment variable
DISPLAY. '

-V to make a fast synthesis of the image. The depth of the ray tree is fixed to 1. No shadowing,
reflection, refraction effects are rendered.

-r res to change de resolution of the NFF input file. With this option, the image will be calculated
with a resXres resolution.

~k coeff
to change de coefficient for the grid construction. The number of voxels in the grid will be
coeff*number_of polygons. The default value for coeff is 10.

~? to display the options.
19
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VM _pRAY (1) USER COMMANDS VM_pRAY (1)

SEE ALSO
NFF(1)

AUTHOR
Didier Badouel (e-mail : badouel@irisa.fr)

IRISA / University of Rennes I - France

WARNINGS
On account of using NFF text file format, reading the input file is very slow. Another version of
VM_pRAY uses a binary input file, but requires a filter program. We think that for experimental use,
NFF as direct input file format is more suitable.

This software does not use I/O node system because our iPSC/2 configuration has not I/O nodes !

ACKNOWLEDGEMENT .
Many thanks go to Thierry Priol, Bruno Amaldi and Jean-Luc Corre who contributed to this software.
And special thanks to Eric Haines (NFF's author) and Mark VandeWettering (author of MTV ray
tracer) who first distributed their work in the field of ray tracing.
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VM_pRAY (Virtual Memory parallel RAYtracer)

# Makefile for VM pRAY -

# Generate code for an iPSC/2 with 4MBytes per nodes
# If your configuration is different, you should modify
# the value of PAGENUMB in the file ray page.h.

#

PROG=pray

CC=gcc

CFLAGS=-0

YFLAGS=-d

]

# If you use X11 Window System ....

#

$XH = -DV_X11 -I/usr/local/X11R3/include

#XL = -L/usr/local/X11R3/1ib -1X11 -L/usr/local/lib
#

# .... else

#

XH =

XL =

CSRC=host_comm.c host_data.c host_main.c \
host_out.c host_page.c host_seads.c
lex.c keyword.c

COBJ=host_comm.o host_data.o host_main.o \
host_out.o host_page.o host_seads.o \
lex.o keyword.o

OSRC=host_nff.y

OOBJ=host_nff.o

-

LIBS=-host =~lm $(XL)

all:
(cd ../node; make);
make $(PROG)

$ (PROG) : $ (COBJ) $ (OOBJ)
$(CC) S(CFLAGS) -o ${(PROG) $(COBJ) $(OOBJ) $(LIBS)

host_out.o : host_out.c
$(CC) $(CFLAGS) -c host_out.c $(XH)

allclean:
(cd ../node; make clean);
make clean

clean:
rm -f ${(COBJ) $ (OOBJ)
-rm -f core tags

lint:
lint $(CSRC)

/*

#1
[ 31

File ¢ host_main.c
Author : Didier BADOUEL
(c} IRISA / University of RennesI - 1989

Nothing ever becomes real until it is experienced.

J. Keats
nclude <stdio.h>
nclude <sys/types.h>

#include <sys/times.h>

#include "ray type.h"

#include “ray_comm.h"

#include "host_extern.h"

extern time t time();

extern char *optarg;

extern int optind;

char *decon = “DECON";

int c, res = 0;

long cloqQ, clogl;

char *infilename = “stdin" ;
char *deconfilename = *,./nff/spirale.nff" ;
char *out filename = “out.rvb";
main(argc, argv)

int argc ;
char * argv{] ;

setpid (HOST_PID);
while ({(c = getopt (argc, argv, “o:i:r:k:s:vx®)) != EOF) {
switch (c) {
case ‘o’
outfilename = optarg;
outF = VRAI;
if ((fdrvb = fopen(outfilename, "w")) == NULL) {
fprint f (stderr, “cannot open %s\t\n*, outfilename);
EXIT (-1);
}
break;
case ‘1’:
infilename = optarg;
break;
case ‘r’:
res = atol {(optarg);
if (res < 0) res = 0;
break;
case ‘k’:
coeff = atol (optarg);
break;
case ‘s’:
seq = atoi (optarg);
if (seq <= 0) seq = 1;
break;
case ‘v’:
vite = VRAI;
profondeur = 1;
break;
case ‘x':
outX

= VRAI;
break;

*/
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VM_pRAY (Virtual Memory parallel RAYtracer)

case '2’:

fprintf (stderr,"usage: $s [-i file] {-o file] ", argv[0]}
fprintf (stderr,"[-r number] [-k number} [-v] {=x]\t\n");

EXIT(-1);

}
}
if (getenv(decon) !=NULL) {

infilename = deconfilename;
}
system(*cat ../COPYING");
fprintf (stderr, "Loading code...\t\n");
InitComm{);
fprintf (stderr, "Reading input file...\t\n");
ReadSceneFile(infilename) ;
if (res != 0) { Xres = yres = res; }
fprintf (stderr, "\tResolution $dX%d\t\t\n“,xres, yres);
fprintf(stderr, “Loading grid...\t\t\n");
CommVox (};

fprintf (stderr,*Init Bitmap ...\t\t\t\n");
init_out();

fprintf (stderr, "Synthesis ...\t\n");

if (outX) {
fclose(stdin);
(void) fopen (“/dev/tty", "r");
fprintf (stderr, "GO 2\t\n*");
{void)getchar();

}

time (&cloq0);

do_comm () ;

time(&cloql);

fprintf (stdout, "Synthesis time on nodes %d sec. \t\n*",clogl - cloqg0);

killcube (-1, -1);
image_out {();

/t

File
Author

host _comm.c
Didier BADOUEL
(c) IRISA / University of RennesI - 1989

Don’t let your mouth write no check that your tail can’t cash.

Bo Diddley

#include <stdio.h>
#include <math.h>
#include "ray_type.h®
#¢include “ray_ comm.h®
#include “host_extern. h*

char *malloc ();

extern char *decon;

#define MAX(A,B) ((A) >= (B) 2 (A) : (B))

#define MALLOC_N (N, T) (T *)malloc((unsigned) (N * sizeof(T)))

MSG_p_init pho;
MSG_pack pack;
MSG_coul msg_coul;
long node;

InitComm ()

{

}

/t

* Loading the node code.

*/

1f (getenv (decon)==NULL) {
load ("../node/node", ALL_NODES, NODE_PID);

I

csend (int TYPE, &seq, sizeof(int), ALL_NODES, NODE_PID);

poly_page = CreateObj(sizeof (Poly));

t_pol = MALLOC_N(poly page, Poly);

Tvoxlist = MALLOC_N{maxvox, Voxlist);

if ((t_pol == NULL) || (Tvoxlist == NULL)) {
fprintf(stderr, “cannot alloc enough memory.\n");
EXIT(-1);

}

OpenPage () ;

CommVox ()

{

long vox_node,i,nb;
/t

* Loading GRID and VOXELS.

*/

SendObj ( (char *)Tvoxlist, sizeof (Voxlist), ind_Tvox);
SendObj ( (char *)seads, sizeof (long), size_seads);
ClosePage();

csend (long_TYPE, &n_pol, sizeof(long), ALL _NODES, NODE_PID);
/'

* Loading the SEADS parameters.

*/

csend (int_TYPE, &nb_cell_x, sizeof(int), -1, NODE_PID) ;
csend (int _TYPE, &nb_cell_ y, sizeof({int), -1, NODE_PID);
csend (int_TYPE, &nb_cell_z, sizeof(int), -1, NODE_PID);
csend (Flt_TYPE, &dx_vox, sizeof(Flt), -1, NODE_PID) ;
csend (Flt TYPE, &dy_vox, sizeof(Flt), -1, NODE_PID);
csend (Flt _TYPE, &dz_vox, sizeof(Flt), -1, NODE_PID);

*/






