ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Shared Virtual Memory and Message Passing
Programming on a Finite Element Application

Rudolf Berrendorf and Michael Gerndt, Zakaria Lahjomri and Thierry Priol

N° 2355
Mars 1995

PROGRAMME 1

apport
derecherche

ZIINRIA

RENNES

Shared Virtual Memory and Message Passing

Programming on a Finite Element Application *

Rudolf Berrendorf and Michael Gerndt**, Zakaria Lahjomri and Thierry

Priol ***

Programme 1 — Architectures paralléles, bases de données, réseaux et systémes distribués
Projet Caps

Rapport de recherche n 2355 — Mars 1995 — 14 pages

Abstract: This paper describes the methods used and experiences made with implement-
ing a finite element application on three different parallel computers with either message
passing or shared virtual memory as the programming model. Designing a parallel finite
element application using message-passing requires to find a data domain decomposition to
map data into the local memory of the processors. Since data accesses may be very irregular,
communication patterns are unknown prior to the parallel execution and thus makes the
parallelization a difficult task. We argue that the use of a shared virtual memory greatly sim-
plifies the parallelization step. It is shown experimentally on an hypercube iPSC/2 that the
use of the KOAN/Fortran-S programming environment based on a shared virtual memory
allows to port quickly and easily a sequential application without a significant degradation
in performance compared to the message passing version. Results for recent parallel archi-
tectures such as the Paragon XP/S for message-passing and the KSR1 for shared virtual
memory are presented, too.

(Résumé : tsvp)

*This work is supported by the Esprit BRA APPARC
**Zentralinstitut fiir Angewandte Mathematik, Forschungszentrum Jilich (KFA), D-52425 Julich -
Germany

**TRISA-INRIA

Unité derecherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Tééphone : (33) 9984 71 00 — Téécopie: (33) 99847171

Comparaison des techniques de mémoire virtuelle
partagée et d’échange de messages a 1’aide d’une
application par élément finie

Résumé : Ce papier présente les résultats d’une mise en oeuvre d’une application par
élément finie sur trois architectures paralléles en utilisant soit 1’échange de messages soit
une mémoire virtuelle partagée. La conception d’une application par élément finie sur une
architecture paralléle & mémoire distribuée nécessite une décomposition de domaine afin
de placer les données dans les mémoires locales des processeurs. Les accés aux données
étant irréguliers, la parallélisation est une tache complexe. Nous montrons que 'utilisation
d’une mémoire virtuelle partagée simplifie grandement cette tache. Nous montrons, a ’aide
de résultats expérimentaux sur un hypercube iPSC/2, que l'utilisation de ’environnement
de programmation KOAN/Fortran-S permet le portage rapide d’une telle application sans
constater une perte significative. Nous présentons également des résultats sur des machines
plus récentes comme le Paragon XP/S et la KSR-1.

Shared Virtual Memory and Message Passing Programming on a Finite Element Application 3

1 Introduction

Parallelizing applications with irregular data access, such as those using finite element tech-
niques, on distributed memory parallel computers is a complex task due the distributed
nature of the memory. Porting such applications on distributed memory parallel computers
requires to handle arbitrary data distributions as the data accesses are unknown at compile
time. The PARTI subroutine package developed at NASA/ICASE by J. Saltz et al. [5] has
been designed for that purpose. It allows the computation of processor-local indices, the
analysis of communication patterns and the communication of non-local array elements. By
using PARTI, few modifications to the sequential application are necessary to get a parallel
version. However, the user is still responsible to select those arrays to be distributed, to
specify the distributions, and to carefully analyze and transform references to distributed
arrays. The specification of the distributions as well as the code analysis requires deeper
knowledge of the application and is a time consuming and error-prone task.

To avoid this tedious task, one can use a shared virtual memory (SVM) concept so as to
program distributed memory parallel computers like conventional shared memory parallel
architectures. A SVM hides the physical local memories and provides to the user a virtual
address space made of pages that move on demand among processors. Each local memory
acts as large cache. This concept can be implemented within the operating system such
as the KOAN SVM [6] or by specialized hardware devices as done in the KSR1 of Kendall
Square Research. However, using an SVM will add additional overhead to the parallel
execution caused by several factors like a distribution overhead, cache coherency, etc. The
aim of this paper is to provide a comparison between the two programming models with
respect to programming aspects and performance. A comparing experiment is carried out
using the same machine: an hypercube iPSC/2. Since this machine does not represent the
state of the art in the design of parallel architectures, we present additionally the results for
two recent parallel architectures: the Intel Paragon XP/S and the KSRI.

This paper is organized as follows. Section 2 describes the ParFEM application we used
in the test. Section 3 addresses the parallelization of ParFEM using a message-passing
programming model whereas section 4 and 5 deals with the shared virtual memory pro-
gramming model. Section 6 discusses several issues for the two programming models. We
conclude in section 7.

2 ParFEM: A Finite Element Application

The ParFEM application has been developed by Harry Vereecken et al. (Institute for Petrol
and Organic Geochemistry) [9] at KFA. This application models transport and chemical pro-
cesses in heterogeneous 3D porous media. Accounting for the heterogeneity of the porous
medium results in grid size of more than 10° nodal points. In combination with the strong
nonlinearity of the partial differential equations such problems can only be handled on
high performance computer systems in combination with appropriate numerical solution
techniques for the linearized set of equations. These equations are obtained by applying

RR n"2355

4 Rudolf Berrendorf and Michael Gerndt, Zakarta Lahjomri and Thierry Priol

time loop

check boundary conditions

non-linear loop

matrix assembly

solve system of linear ParFEM
equations

Figure 1: Overall program structure of ParFEM.

Galerkin’s finite element method to the water and solute transport equation. The program
is based on a code originally developed by Yeh [10]. Fig. 1 shows the overall program struc-
ture. The outer loop models the steps in time, the boundary loop varies certain boundary
conditions, and with the non-linear loop the system of non-linear equations is reduced to a
system of linear equations. Inside this non-linear loop are the compute-intensive parts of
the application, the assembling of the finite element matrix and the solution of the linear
equations. The assemble matrix, which is set up in the assemble part and passed to the
solver, is a sparse matrix with 18 (2D-problem) or 27 (3D-problem) non-zero elements per
row.

From the whole application we have picked the most time consuming part of the inner
loop, the assemble of the finite element matrix and the solution of a set of equations with
a conjugate gradient method. For our experiments we have used two data sets, a small
data set with 1254 nodal points (900 elements; small 3D problem) and a larger data set
with 17368 nodal points (8325 elements; large 2D problem). The assemble part mainly is a
loop over all elements. The loop iterations can be run in parallel, but update operations on
shared variables have to be done atomically. The conjugate gradient method is an iterative
algorithm for finding the solution for a set of equations; the algorithm iterates until a
convergence criterion is reached.

INRIA

Shared Virtual Memory and Message Passing Programming on a Finite Element Application 5

Distributor
Node Distribution

Input Data

Object
Partitioner

!

element distribution
surface distribution
Cauchy surface distribution

Data
Partitioner

T

Replicated Distributed
Input Data, Input Data

| Par FEM |

Figure 2: Data distribution tools.

3 Message-Passing

3.1 Data Domain Decomposition

The most performance critical decision is the selection of the data decomposition strategy.
The parallel code handles arbitrary distributions correctly but the communication overhead
can be quite different. Therefore a tool was developed, the distributor, which computes from
a specification of the problem domain, a specification of the global node numbering scheme,
and a user specified decomposition strategy the distribution of the nodes. From the node
distribution several distributions of other objects are derived automatically by a tool called
object partitioner. For example, the partitioner computes a distribution of the grid elements
based on the majority rule: an element is assigned to that processor which owns most of its
nodes. If there is no unique processor with this property an arbitrary processor is selected.
This step requires to understand the indexing scheme in the application. Fig. 2 shows the
global organization of the data distribution tools.

According to the distributions, the input data i1s rearranged and copied to a parallel
file system such that each processor can read the information for its local array elements
efficiently. The developed tool, the data partitioner, is executed on one node of the parallel
system. It reads the different distributions and the sequential data, and generates one file
containing the data replicated in all processors and one file for every processor in the parallel
file system containing the information of distributed arrays.

RR n"2355

6 Rudolf Berrendorf and Michael Gerndt, Zakarta Lahjomri and Thierry Priol

3.2 PARTI Subroutines

The implementation is based on a subroutine package developed at NASA/ICASE by Joel
Saltz et al. called PARTI [5]. Tt supports arbitrary distributions of arrays, computation of
processor-local indices, analysis of communication patterns, and communication of non-local
array elements.

Distributions are specified in each processor via a list of the global array indices assigned
to the processor. Based on the distributions, communication patterns and local indices
are computed. Pre-computed communication patterns are then used in communication
operations to perform the actual exchange of array element values. Since the problem
topology 1s fixed, the expensive analysis of communication patterns need to be done only
once.

PARTI supports gather, scatter, and scatter add operations to fetch, distribute and com-
bine information for non-local elements. Besides these operations on one-dimensional arrays
also operations on two-dimensional arrays were needed and partly developed in cooperation
with ICASE during the parallelization of this application.

3.3 Matrix Assembly

The assembling step is made up of three different phases. First, all information of non-local
nodes of elements owned by a processor is gathered from the owners. Then the computation
of the individual element matrices is performed. The components of the element matrices
are then combined in each processor for local as well as non-local nodes of these elements.
Afterwards, the partial information for non-local nodes computed by the owners of elements
1s combined in the owners of the nodes via a scatter add operation.

3.4 Conjugate Gradient

The linear equation system determined by the global matrix is solved with the Conjugate
Gradient method. During each step of this iterative solver the values of array elements of
the current solution have to be exchanged. In addition, the termination condition has to be
computed by global reductions.

4 Shared Virtual Memory on KOAN /Fortran-S
4.1 Overview of KOAN /Fortran-S

The KOAN/Fortran-S programming environment allows the user to program a distributed
memory parallel architecture without explicit message passing. This programming environ-
ment is constituted of two components: a Shared Virtual Memory (KOAN) and a Fortran
code generator (Fortran-S). This programming environment has been ported on the Intel
hypercube iPSC/2 but work is under progress to port this programming environment on the
new Intel Paragon XP/S.

INRIA

Shared Virtual Memory and Message Passing Programming on a Finite Flement Application 7

C gather information for non-local node C$ann[DoShared(“BLOCK”)]
call dfgather(schedl x(nnp+1),x(1)) C$ann[VGlobal(DSUM, tmprld, 1, nnp)]
do m=1nel
call ifm2dgather(schedl lrn(1,nnp+1), ... local computation ...
+ Irn(1,1),1,jband) do ig=1,8
C perform computation for local elements only ni = iemf(iq)
do m=1,nel tmprld(ni) = tmprld(ni) + ...
... local computation ... do jq=1,8
do iq=1,8
ni = iem(iq) tmprld(ni) = tmprld(ni) + ...
rld(ni) = rld(ni) + ... 1= ..
do jq=1,8 C$ann[AtomicUpdate()]
cmatrx(i,ni) = cmatrx(ini) + ...
rld(ni) = rld(ni) + ... enddo
= .. enddo
cmatrx(i,ni) = cmatrx(ini) 4+ ... enddo
enddo C$ann[DoShared(“BLOCK”)]
enddo do i=1nnp
enddo rld(i) = tmprld(i)
C combine partial sums of matrix elements enddo
call dfmdscatter’add(schedl,cmatrx(nnp+1,1),
+ cmatrx(1,1),maxnp,jband)
call dfscatter'add(schedl, rld(nnp+1), rld(1))

Figure 3: Matrix assembly: message-passing (left) and KOAN/Fortran-S (right).

C Gather information of non local node C$ann[DoShared(” BLOCK”)]

call dfgather(sched2, vec(nnp+1),vec(1)) do j=1, nnp

do j=1, nnp temp=0.
temp=0. do i=1, eintrz
do i=1, eintrz temp=temp+cmatrx(i,j)*vec(gnojen(i,j))

temp=temp+cmatrx(i,j)*vec(gnojen(i,j)) enddo

enddo axvec(j)=temp
axvec(j)=temp enddo

enddo

Figure 4: Matrix-vector multiply: message passing (left) and KOAN/Fortran-S (right).

RR n"2355

8 Rudolf Berrendorf and Michael Gerndt, Zakarta Lahjomri and Thierry Priol

KOAN is a Shared Virtual Memory (SVM) embedded in the operating system of the
iPSC/2 [6]. Tt provides to the user an abstraction from an underlying memory architec-
ture [8]. It provides a virtual address space that is shared by a number of processes running
on different processors of a distributed memory parallel computer (DMPC). In order to dis-
tribute the virtual address space, the SVM is partitioned into pages which are spread among
local processor memories according to a mapping function. Each local memory acts as a
large software cache for storing pages. Since the size of the physical memory on a processor
1s much less than the size of the SVM, the part of the local memory, which acts as a cache,
is managed according to a LRU (Least Recently Used) policy. A memory management unit
(MMU) is needed to provide the user with a linear address by translating virtual addresses
to physical ones. KOAN provides several functionalities such as different cache coherence
protocols and synchronization mechanisms

Fortran-S is a code generator targeted for shared virtual memory parallel architectures
such as the iPSC/2 running KOAN or the KSR1. Tt respects the Fortran-77 standard since
it 1s widely used in the scientific community. Therefore no extension to the language syntax
has been made. A set of annotations provides the user with a simple programming model
based on shared array variables and parallel loops. One of the main features of Fortran-S is
its SPMD (Single Program Multiple Data) execution model [4] that minimizes the overhead
due to the management of parallel processes. The Fortran-S code generator creates a process
for each processor for the entire duration of the computation. There is no dynamic creation
of processes during the execution. A description of Fortran-S is given in [3]. A parallelizer,
called PARKA, can generate Fortran-S code from a sequential fortran-77 code.

4.2 Matrix Assembly

This section outlines the parallelization of the matrix assembly using the KOAN/Fortran-S
programming environment. A simplified version of the matrix assembly algorithm is shown
in Fig. 3. The outer loop is used to scan each element of the mesh. This loop cannot be
parallelized without adding adequate synchronization. Due to indirect access to shared vari-
ables cmatrx and rld, there are some potential data dependencies. Two techniques have been
exploited to overcome these dependencies. First a temporary variable, that is not shared
and thus replicated on every processor, allows to make the update to rid independently. By
using a proper annotation (C$ann[Vglobal(DSUM,tmprld,1,nnp)]), a global sum operation is
performed on each element of vector tmprld and each processor has the same value of each
element of vector tmprld. Later the shared variable rld is updated by the private temporary
sums. (see Fig. 3). The main advantage of this technique is to avoid false-sharing when
updating a shared variable. false-sharing appears when several processors write into differ-
ent addresses located in the same page. The page will move back and forth between the
two processors and thus increasing the communication time. This optimization seems to be
burdensome but could be carried out automatically by the Fortran-S code generator.
Similarly, this technique could be used with the cmatrx variable however this would be
very memory consuming since the variable has to be replicated on every processor. There
1s another solution based on an explicit synchronization scheme to avoid several processors

INRIA

Shared Virtual Memory and Message Passing Programming on a Finite Element Application 9

to update the same element. For this purpose, Fortran-S provides two synchronization
mechanisms: critical section and atomic update. Critical section is not well suited for
synchronizing the update since it is implemented with a distributed algorithm using message
passing [6]. It is mainly targeted for synchronizing large grain computations which is not
our case. Atomic update is an efficient synchronizing mechanism based on the locking of
pages into the cache of each processor. A C$ann[AtomicUpdate()] annotation has to be
added before the assignments to ensure that updates to cmatrx are done atomically: the
processor in charge of updating cmatrx locks the page that contains the element that have
to be updated. Requests to this page, coming from other processors, will not be processed
until the page is unlocked. As the work in each iteration is nearly equal, we have used a
block scheduling for the loop distribution.

4.3 Conjugate Gradient

The parallel version 1s very similar to the sequential one. Some parts have been modified
in order to be able to use reduction operations such as global sum or global maximum.
The algorithm iterates until a convergence criterion is reached. For each iteration step, a
matrix-vector multiply subroutine (Fig. 4) is called. In the CG algorithm, there are mainly
two kinds of loops that can be distributed: loops that update vectors and reduction loops.
For these latter loops (five in the code), annotations such as C$ann[SGlobal(DSUM,var)] and
C%ann[SGlobal(DMAX,var)] have been inserted into the code. In four cases, such optimiza-
tions can be carried out automatically by the PARKA parallelizer. The Fortran-S code
generator will add extra code to call necessary message-based reduction functions at the
end of the execution of the parallel loop. For performance reasons this is implemented with
message-passing rather than using the SVM.

The parallelization of the matrix-vector multiply assigns a part of the result vector to
each processor. Due to the same blocking distribution technique applied for every loop in the
CG algorithm, the resulting vector does not need to be stored in a shared memory region.
However, the input vector has to be stored in a shared variable since it is accessed indirectly.
Fig. 4 shows the parallel version of the matrix vector multiply.

5 Shared Virtual Memory on the KSR

5.1 Overview of the KSR

The KSR1 of Kendall Square Research is a parallel machine with hardware-embedded SVM,
called ALLCACHETM implementing sequential consistency [7]. The unit of coherence is a
subpage of size 128 bytes. Parallel constructs are available to the user on several levels. On
the most basic level are POSIX pthreads. On the next higher level are PRESTO routines,
which dynamically evaluate runtime decisions to improve performance. Available constructs
to specify parallelism are parallel regions, parallel sections, tile families (parallel loops), and
affinity regions for multiple loops. Tiling in Fortran can be done automatically with the

RR n"2355

10 Rudolf Berrendorf and Michael Gerndt, Zakarta Lahjomri and Thierry Priol

KAP preprocessor, semi-automatically with programmer hints to the preprocessor which
inserts missing information to the best of its knowledge, or manually. While automatic
parallelization is the easiest way to use, best performance 1s reached usually with manual
parallelization. To control the assignment of work to pthreads and eventually to processors,
the user can group a number of pthreads to teams such that subsequent parallelism is
partitioned the same way. This guarantees that memory regions are accessed by the same
processors thus reducing page conflicts. Affinity regions have the same aim for loop tiling
over several loops. For a full description of the hardware and software details see [1].

5.2 Parallelizing for the KSR

As the general parallelization strategy for the KSR and KOAN/Fortran-S is similar we
will describe only the relevant differences for the KSR compared to the work done for
KOAN/Fortran-S.

The basic programming model for the KSR is the fork-join model in contrast to Fortran-
S which uses the SPMD-model. To reduce the overhead on forking with parallel constructs
we allocated at the start of the program a team of threads which is given as an additional
argument to parallel constructs. With this technique the overhead for fork and join was
reduced.

The original program version was written for Cray-like machines with little attention to
data locality. While porting the application to one processor of the KSR it has shown up
that it was necessary to optimize the program with respect to locality to utilize the processor
cache. All optimizations applied would be important for other (sequential) machines with
a memory hierarchy (e.g. DEC Alpha, IBM RS/6000, etc.), too. It is remarkable, that
all applied cache optimizations have influenced the performance with respect to SVM in a
positive way, and that after this work only few modifications were necessary to optimize for
the specifics of SVM.

Synchronizing accesses to shared variables in the assemble part was done with page locks
to ensure exclusive access to parts of a data structure while other processors still have the
possibility to work on other parts. A first implementation with critical sections (as it would
be done on a shared memory machine with a few processors only), i.e. exclusive access to a
code section, has shown a significant bottleneck.

We used two alternatives to reduce false sharing on the KSR: introduction of private data
which has to be done with care to keep the used memory small, and alignment of variables
on page boundaries if the false sharing happens between different variables.

KSR offers several possibilities for parallelizing an application. The easiest to use ap-
proach are parallel loops marked with special comments. While the advantage of this model
is 1ts ease of use, the disadvantage is the relative high overhead for initiating a parallel loop;
only if enough work is available inside a loop the startup costs and the costs of the barrier
synchronization at the end of a loop can be compensated. This 1s especially a problem for
small loops, e.g. to initialize data structures, where the high overhead of a parallel loop has
to be weighted against the disadvantage of a concentration of all accessed subpages on one

INRIA

Shared Virtual Memory and Message Passing Programming on a Finite Element Application 11

node if the loop is executed sequentially by one processor. Parallelizing the program with
parallel loops resulted only in small modifications to the sequential code.

The other approach is to run a large program section in parallel and to manage loop
iteration splitting, synchronization, reduction operations, etc. by your own using low-level
primitives of the operating or run-time system, i.e. using an SPMD-model for that part of
the program. The advantage is that the parallel overhead can be kept smaller, especially if
the program has several small parallel sections. The disadvantage with this approach is, that
the code has to be rewritten (sometimes substantially) and temporary data structures for
each thread have to be managed. With ParFEM the performance gain over the parallel loops
approach was relatively small (within 10 percent) such that this type of parallelization was
be useful only on restricted sections of code rather than a general parallelization strategy.

6 Discussion

Table 1 summarizes the performance results we got from the experiments described in the
previous chapters. More results can be found in [2]. In some columns for the large data
set, results are missing due to insufficient memory for all the data. KOAN/Fortran-S stands
for an iPSC/2 with KOAN/Fortran-S, MP+PARTI for an iPSC/2 with message-passing,
Paragon for message-passing implementation on the Paragon XP/S, and KSR for the KSR1.
small gives the results for the small data set (1254 nodes) and large gives the results for the
large data set (17368 nodes).

Comparing the SVM version with the message passing version with respect to perfor-
mance can be done only for the two versions running on the same hardware (iPSC/2). The
SVM version for more than 1 processor is within a factor of 1.1 (small number of processors)
to 1.4 (32 processors) compared to the message-passing version. One reason for the loss of
performance on a large number of processors is the large page size (4 K) resulting in data
access conflicts. The KSR scales well on the large data set, one reason is the small (sub-)
page size of 128 bytes. The KSR results seems to be similar to the ones obtained with the
Paragon XP/S except for the small data set. This can be explained by the greater data
cache size of the KSR processor (256 KB) comparing to the one in the i860 micro-processor
(16 KB). With the large data set, the cache size has few impact. The performance results
mentioned for the message passing version will show a much better efficiency for a paral-
lelized version of the entire application. The overhead for handling the distributions and for
computing the communication patterns is neglectable for more realistic runs of the entire
application since the setup time is constant. This setup phase takes almost 45 % of the total
execution time on 32 nodes and dominates the total time for the small data set. For the
faster machines, Paragon and KSR1, the small data set had not enough work to compensate
the parallel overhead.

All program versions of the application are very similar to the sequential program. The
main modifications we made for the SVM-versions, KOAN /Fortran-S and KSR, dealt with

1Due to restrictions only 27 processors were used really.

RR n"2355

12 Rudolf Berrendorf and Michael Gerndt, Zakarta Lahjomri and Thierry Priol

Proc. || KOAN/Fortran-S | MP+PARTI Paragon KSR

small large | small large | small large | small large
1 86.9 92.4 6.5 30.8| 1.75 386
2 59.1 51.0 4.8 182 | 0.94 20.2
4 30.9 26.6 2.8 9.8 | 059 10.3
8 18.3 16.7 3.9 55| 043 5.4
16 14.4 1345 | 11.8 3.7 3.8 | 041 3.1
32 12.6 735 | 89 531 33 33]056" 23!

Table 1: Performance results (in seconds).

the exploitation of spatial locality, avoidance of false sharing (mainly by array privatisation),
and handling of reductions. Although Fortran-S and the KSR use different programming
models (SPMD vs. fork-join) the modifications we made were similar. Both versions could
be executed without modifications on any number of processors, and the code still runs
on sequential machines. With the message passing version, three pre-processing steps, i.e.
domain decomposition specification, rearranging input data, and re-compilation, have to be
performed prior to the parallel execution on a different processor configuration. Although
only few changes were made to the sequential code during the parallelization, a deep un-
derstanding of the application was needed. To successfully parallelize that application also
the subroutine evaluating the boundary conditions had to be transformed since distributed
arrays are accessed. Although this subroutine only requires 0.5 % of the sequential execu-
tion time it was the most difficult to handle. Most of the object distributions are related to
arrays used only in this subroutine. Several different indexing schemes had to be analyzed
and almost all references to arrays in this subroutine implied a specific analysis and code
adaptation. In the SVM version this subroutine has not to be dealt with since it can be
executed sequentially.

One big advantage of the SVM programming model was the ability to do incremental
parallelization i.e. starting with the sequential version we began to parallelize some kernels
only, running the rest of the program sequentially. With the message passing version all
debugging had to be performed on the fully restructured code thus making it very difficult
to detect indexing failures and communication failures. These result only in numerical
differences between the sequential and the parallel solution.

7 Conclusion

We have described our experience and results with porting an application with irregular data
access to different parallel systems with either shared virtual memory or message passing.
To conclude the experiments, SVM can be efficient if the size of the problem is large enough.
Beside finding parallel portions in a program, the major task on machines with SVM is to

INRIA

Shared Virtual Memory and Message Passing Programming on a Finite Flement Application 13

avoid page access conflicts. Privatizing data structures has the obstacle that the demand
of memory on each node grows considerably. Another possibility 1s the use of a weaker
cache coherence protocol. Two major benefits found in parallelizing the application for an
SVM system was the ability to do incremental parallelization starting from a sequential
program version, and the parallelization by local transformations. The message-passing
version needed a deep understanding of the whole application and it was not possible to
parallelize it incrementally. On the other side, in a direct comparison on the iPSC/2, we got
better performance results with the message passing version. Our work on parallelizing the
code has shown that utilities to accurately monitor system activities and to report the results
to the user in a reasonable way is essential for doing a good job on program optimization
on this type of machines.

8 Acknowledgments

We would like to thank Harry Vereecken of the Institute for Petrol and Organic Geochemistry
at KFA who gave us his application program for our parallelization tests. Achim Basermann
(Central Institute for Applied Mathematics, KFA) has contributed the sequential conjugate
gradient solver and helped us in many discussions. The Centre for Novel Computing (CNC)
at the Manchester University gave us access to their Kendall Square Machine, we thank
them very much, especially Mark Bull and Graham Riley. We would like to thank Prof. A.
Bode and R. Hackenberg at the TU Miinchen for providing access to their iPSC/2 system.

References

[1] Technical Summary. Kendall Square Research, Waltham, Massachusetts, edition, 1992.

[2] Rudolf Berrendorf, Michael Gerndt, Zakaria Lahjomri, Thierry Priol, and Philippe
d’Anfray. Fwvaluation of numerical applications running with shared virtual memory.
Internal Report KFA-ZAM-1IB-9315, KFA Research Centre Juelich, 1993.

[3] F. Bodin, L. Kervella, and T. Priol. Fortran-s: a fortran interface for shared virtual
memory architectures. In Supercomputing’93, pages 274-283, IEEE, November 1993.

[4] F. Darema-Rodgers, V.A. Norton, and G.F. Pfister. Using A Single- Program-Multiple-
Data Computational Model for Parallel Execution of Scientific Applications. Technical
Report RC11552, IBM T.J Watson Research Center, November 1985.

[6] R. Das and J. Saltz. A Manual for Parti Runtime Primitives - revision 2. Internal
Research Report, ICASE, 1992.

[6] Z.Lahjomri and T. Priol. Koan: a shared virtual memory for the ipsc/2 hypercube. In
CONPAR/VAPPY2, September 1992.

RR n"2355

14

Rudolf Berrendorf and Michael Gerndt, Zakarta Lahjomri and Thierry Priol

[10]

Leslie Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Transactions on Computers, C-28(6):313-348, September
1979.

Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Yale
University, September 1986.

H. Vereecken, G. Lindenmayr, A. Kuhr, D. H. Welte, and A. Basermann. Numerical
Modelling of Field Scale Transport in Heterogeneous Variably Saturated Porous Media.
Internal Report KFA/ICG-4 No. 500393, Forschungszentrum Jiilich, 1993.

G.T.Yeh. SDFEMWATER, a Three Dimensional Finite Element Model of Water Flow
Through Saturated-Unsaturated Media. ORNL-6386, Oak Ridge National Laboratory,
1987.

INRIA

/A

Unité derecherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derecherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité derecherche INRIA Rocguencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

